Язык: Русский

Скачиваний: 700

Формат: Microsoft Word, MatLab, Delphi

Размер файла: 581 Кб

Автор:

Скачать работу

Определитель прямоугольных матриц. Теорема Коши - Бине

Федеральное агентство по образованию

Мурманский Государственный Педагогический Университет

Факультет прикладной математики, программирования и экономики

Кафедра алгебры, геометрии и прикладной математики

Курсовая работа

на тему:

Определитель произведения прямоугольных матриц.

Теорема Коши-Бине.

Выполнила студентка

II курса группы ПМИ

Решоткина Наталья Николаевна

Научный руководитель:

кандидат физико-математических

наук, доцент кафедры АГ и ПМ

Мостовской Александр Павлович

Мурманск

2007


 TOC \o "1-3" \h \z \u Введение. PAGEREF _Toc169771091 \h 4

Глава I. PAGEREF _Toc169771092 \h 5

§ 1 Определение, обозначения и типы матриц. PAGEREF _Toc169771093 \h 5

Свойства сложения и умножения матриц на скаляры: PAGEREF _Toc169771094 \h 7

Глава II. PAGEREF _Toc169771095 \h 7

§1 Умножение матриц. PAGEREF _Toc169771096 \h 7

§2 Свойства умножения матриц. PAGEREF _Toc169771097 \h 8

§3 Техника матричного умножения. PAGEREF _Toc169771098 \h 9

§4 Транспонирование произведения матриц. PAGEREF _Toc169771099 \h 10

Глава III. PAGEREF _Toc169771100 \h 10

§1 Обратимые матрицы.. PAGEREF _Toc169771101 \h 10

§2 Элементарные матрицы.. PAGEREF _Toc169771102 \h 12

Глава IV.. PAGEREF _Toc169771103 \h 13

§1 Определители. PAGEREF _Toc169771104 \h 13

§2 Простейшие свойства определителей. PAGEREF _Toc169771105 \h 14

§3 Основные свойства определителей. PAGEREF _Toc169771106 \h 14

§4 Миноры и алгебраические дополнения. PAGEREF _Toc169771107 \h 18

Теоремы об определителях. PAGEREF _Toc169771108 \h 18

§5 Определитель произведение матриц. PAGEREF _Toc169771109 \h 21

Необходимые и достаточные условия равенства определителя нулю.. PAGEREF _Toc169771110 \h 22

§6 Разбиение матриц. PAGEREF _Toc169771111 \h 23

§7 Теорема (формула Бине-Коши) PAGEREF _Toc169771112 \h 25

Заключение. PAGEREF _Toc169771113 \h 28

Литература. PAGEREF _Toc169771114 \h 30

Приложение. PAGEREF _Toc169771115 \h 31


Введение

При решении различных задач математики очень часто приходится иметь дело с таблицами чисел, называемых матрицами. С помощью матриц удобно решать системы линейных уравнений, выполнять многие операции с векторами, решать различные задачи компьютерной графики и другие инженерные задачи.

Цель данной работы: теоретическое обоснование и необходимость практического применения теоремы Коши-Бине:

Пусть , -  и -матрицы соответственно,

Тогда

Другими словами, при  определитель матрицы  является суммой произведений всевозможных миноров порядка  в  на соответствующие миноры матрицы  того же самого порядка

Работа состоит из четырех глав, содержит заключение, список литературы и приложение программы для теоремы Коши-Бине. В главе I рассматриваются элементы линейной алгебры – матрицы, операции над матрицами и свойства сложения матриц, и умножения на скаляр. Глава II посвящается умножению матриц и его свойств, а также транспонирование произведения двух матриц. В главе III рассматриваются обратимые и элементарные матрицы. В главе IV вводиться понятие  определителя квадратной матрицы, рассматриваются свойства и теоремы об определителях, а также приводится доказательство теоремы Коши-Бине, что является целью моей работы. В дополнение прилагается программа показывающая механизм нахождения определителя произведения двух матриц.

Глава I

§ 1 Определение, обозначения и типы матриц

Мы определяем матрицу как прямоугольную таблицу чисел:

Где элементы матрицы aij (1≤im, 1≤jn)-числа из поля .Для наших целей поле  будет либо множеством всех вещественных чисел, либо множеством всех комплексных. Размер матрицы , где m-число строк, n-число столбцов. Если m=n, то говорят, что матрица квадратная, порядка n. В общем случаем матрица называется прямоугольной.

Каждой  матрице  с элементами aij соответствует n×m матрица с элементами aji . Она называется транспонированной к  и обозначается через=. Строки матрицы  становятся столбцами в  и столбцы матрицы  становятся строками в

Матрица называется нулевой если все элементы равны 0:

Матрица называется треугольной если все ее элементы, расположенные ниже главной диагонали равны 0

Треугольная матрица называется диагональной, если все элементы расположенные вне главной диагонали равны 0

Диагональной матрица называется единичной, если все элементы расположенные на главной диагонали равны 1

Матрица, составленная из элементов, находящихся на пересечении нескольких выбранных строк матрицы  и нескольких выбранных столбцов, называется субматрицей для матрицы

В частности, строки и столбцы матрицы можно рассматривать как ее субматрицы.

§2 Операции над матрицами

Определим следующие операции:

             I.      Сумма двух  матриц    с элементами  и  матрица С с элементами

          II.      Произведение матрицы  на число

       III.      Произведение  матрицы матрица С с элементами

      IV.       поле скаляров, рассмотрим  матриц над полем

Опр. Две матрицы равны, если они имеют одинаковую размерность и на одинаковых местах расположены одинаковые элементы. Другими словами:  равна матрице

Опр. Пусть  и  называется  столбце расположен элемент

Пример:

Опр. Пусть  на матрицу  называется  у которой в  столбце расположен элемент  умножить на матрицу  нужно все элементы матрицы  умножить на скаляр

Определение. Противоположной к матрице  называется матрица

Свойства сложения и умножения матриц на скаляры:

1) Сложение матриц  ассоциативно и коммутативно.

2)

3)

  а)

  б)

4)

Глава II

§1 Умножение матриц

Опр. Произведением  матрицы  на  матрицу  называется  матрица

 

Говорят, что  есть скалярное произведение  на

Пример:

§2 Свойства умножения матриц

1.     Умножение матриц ассоциативно:

1)   и

Доказательство:

Пусть  и определено

Определим матрицы:

а)

б)

 (1)  матрицы, тогда  имеют одинаковую размерность

2) Покажем, что на одинаковых местах в матрицах  расположены одинаковые элементы

Вывод: Матрицы  имеют одинаковую размерность и на одинаковых местах расположены одинаковые элементы.

2.     Умножение матриц дистрибутивно

Доказательство:

 так как определено  и определено

 размерности

Матрицы  имеют одинаковую размерность, покажем расположение одинаковых элементов:

Вывод:  На одинаковых местах расположены одинаковые элементы.

  3.  матрицы, то доказательство проводим аналогично свойству 2.

 4.  

Доказательство:

 

5. Умножение матриц в общем случае не коммутативно. Рассмотрим это на примере:

§3 Техника матричного умножения

 поле скаляров,

Свойства:

1)    Произведение  можно рассматривать, как результат умножения столбцов матрицы  слева и как результат умножения строк матрицы  на  справа.

2)    Пусть  матрица  коэффициенты которой служат элементы матрицы

Пример

Пусть  коэффициенты которой служат элементы матрицы

Пример:

3)    Столбцы матрицы

§4 Транспонирование произведения матриц

 поле скаляров,

Теорема

 если  

Доказательство:

 1) Пусть

 - размерности

2)  т.е

 на  столбец

Глава III

§1 Обратимые матрицы

 поле скаляров, множество

Определение. Квадратная матрица  порядка  называется единичной матрицей

Пусть

Теорема 1

 выполняется  

Доказательство:

 

Из этого следует  является единичной матрицей. Она выполняет роль единицы при умножении матриц.

Определение. Квадратная матрица  так, что выполняются условия

Матрица  называется обратной к   обозначается  обратная к

Теорема 2

Если

Доказательство:

 Пусть дана матрица  т.е.

Обозначение: Множество всех обратимых матриц порядка  над полем  обозначается

Теорема 3

Справедливы утверждения:

1)  алгебра

2)  группа

Доказательство:

а) Пусть  

 обратные к

Аналогично:  обратимая матрица т.е

б)

в)  обратима т.е

2) Докажем второе утверждение, что  группа. Для этого проверим аксиомы групп:

1)

2)

3)

 группа

Следствие:

1)    Произведение обратимых матриц есть обратимая матрица

2)    Если  обратима, то

3)   

4)   

§2 Элементарные матрицы

Пусть  поле скаляров

Определение.Элементарной матрицей называется матрица, полученная из единичной матрицы  в результате одного из следующих элементарных преобразований:

1)    Умножение строки (столбца)  на скаляр

2)    Прибавление к какой либо строке (столбцу)  другой строки (столбца), умноженный на скаляр

Обозначение:  

 

Пример: Элементарные матрицы порядка 2

Обозначение:  

Глава IV

§1 Определители

 Определитель матрицы  умноженная на знак, соответствующей подстановки.

Пример

Определитель второго порядка равен произведению элементов главной диагонали вычесть произведение элементов на побоичной.

Для

Получили правило треугольника:

 SHAPE  \* MERGEFORMAT

§2 Простейшие свойства определителей

1)    Определитель матрицы с нулевой строкой (столбцом) равен нулю

2)    Определитель треугольной матрицы равен произведению элементов, расположенных на главной диагонали

Определитель диагональной матрицы равен произведению элементов, расположенных на главной диагонали. Матрица  диагональная если все элементы, расположенные вне главной диагонали равны нулю.

§3 Основные свойства определителей

 поле скаляров,

1)

Доказательство:

 «пробегает» все множество

3)    При перестановке двух столбцов (строк) матрицы

Доказательство:
I) Перестановка столбцов:

Пусть  перестановкой двух столбцов с номерами

В доказательстве будем использовать равенство:

 

Если  пробегает все множество значений

II) Перестановка строк

Пусть  получена из  получена из  перестановкой двух столбцов, тогда

III) Определитель матрицы, имеющий две одинаковые строки (столбца) равных нулю

Доказательство:

Проведем для такого поля

Замечание

Доказательство для случая

Пусть в  есть две одинаковые строки с номерами

 и

Если у  два одинаковых столбца, то у транспонированной матрицы  две одинаковые строки

IV) Если все элементы какой-либо строки (столбца) матрицы  умножить на

Доказательство:

Пусть  получена из  умножением на  

 так как

Аналогичное доказательство для столбцов

V) Определитель матрицы у которой две строки (столбца) пропорциональны равны нулю

Доказательство:

Пусть в матрице  строки  пропорциональны т.е  на

Для столбцов:

Пусть  получена из  и  пропорциональны и

VI) Если каждый элемент    есть сумма двух элементов, то определитель  равен сумме двух определителей. В матрице первого определителя в

Доказательство:

VII) Ели к какой либо строке (столбцу) матрице определителя прибавить  другую строку (столбец), умноженный на

Доказательство:

Для столбцов анологично.

VIII) Если какая либо строка (столбец) матрицы  является линейной комбинацией других строк (столбцов)

Доказательство:

Если какая то строка линейная комбинация других строк, то к ней можно прибавить другие строки, умноженные на скаляры так, чтобы получилась нулевая строка. Определитель такой матрицы равен нулю.

Пример:

 (сначала умножаем первую строку на -2 и складываем со второй, затем на -3 и складываем с третей). Такое правило приведения к треугольному виду используется для определителей

 так как определитель треугольной матрицы равен произведению элементов расположенных на главной диагонали.

Если квадратная матрица является произведением некоторых матриц (которые могут быть  прямоугольными), то часто бывает важно иметь возможность выразить определитель произведения в терминах свойств множителей. Следующая теорема –мощный показатель этого.

§4 Миноры и алгебраические дополнения.

Теоремы об определителях.

 поле скаляров,

Опр. Минор   элемента  определителя  порядка  вычеркиванием

Главные миноры определителя

Для  главные миноры есть определители

Пример:

Рассмотрим матрицу  и вычислим ее миноры

Определение. Алгебраическим дополнением элемента  обозначается  называется число

Пример: Вычислим

Лемма 1

Доказательство:

 (в сумме только те слагаемые ненулевые, где

Тогда подстановка имеет вид:  поставим в соответствие  т.е  

 на множество подстановок   что  имеют одинаковые инверсии, значит  имеют одинаковую четность и знаки

Лемма 2

Если равны нулю все элементы какой-либо строки (столбца) матрицы  за исключением быть может одного элемента, то определитель матрицы  равен произведению этого элемента на его алгебраическое дополнение

Доказательство:

Пусть все элементы  за исключением элемента  перестановкой строк и столбцов  переместили элемент  в правый нижний угол  строк и  равны нулю. По Лемме 1

Теорема Лагранжа

 равна сумме произведений элементов какого-либо столбца (строки) матрицы  на их алгебраическое дополнение. Другими словами: разложение по  имеет вид:   разложение по

Доказательство:
рассмотрим  и запишем в виде:

 разложение по

Теорема 2

Справедливы равенства:

Рассмотрим матрицу  следующим образом: все столбцы матрицы  совпадает с  два одинаковых столбца, поэтому определитель матрицы  равен нулю, разложим определитель матрицы  по

 

Следствие:

§5 Определитель произведение матриц

 поле скаляров,

Лемма 1

Пусть  элементарная матрица порядка

1)    получена из матрицы

Матрица   получена из  умножением

2)

Матрица, полученная из  прибавлением к 

Лемма 2

1)

2)

Теорема 1

Определитель произведения двух матриц равен произведению их определителей т.е.

Доказательство:

Пусть строки матрицы  линейно независимы, тогда существует цепочка элементарных преобразований  

2) Строки  линейно зависимы, тогда существует цепочка элементарных преобразований, которая переводит  в ступенчатую матрицу

Из того, что

Необходимые и достаточные условия равенства определителя нулю

 поле скаляров,

Теорема 1

Достаточность:

Если строки (столбцы) матрицы

Необходимость:

Пусть  линейно независимы, тогда существует цепочка элементарных преобразований переводящее II следует, что  линейно зависима, линейно зависима.

Теорема 2

 следующие условия равносильны:

1)

2)

3)

4)  представима в виде произведения элементарных матриц

Доказательство:

 доказано в Теореме 1

§6 Разбиение матриц

Если  матрицу  матрицу  матрицу  и  матрицу  записать в виде

      (1)

То они, образуют  некоторую  матрицу  могут быть названы блоками матрицы  соответственно. Представление (1) называется разбиением матрицы

Если матричное произведение существует и  соответствует разбиению по строкам матрицы    имеет блоки

Таким образом, мы предполагаем, что произведение матриц в терминах блоков, полученных при соответствующих разбиениях сомножителей, формально совпадает с произведением этих матриц в терминах скалярных элементов. Покажем это на примере:

Упражнение1. Пусть

 

 

Это проверяется прямым вычислением

Теорема (1)

Пусть матрица  из  имеет блоки  матрица из  с блоками  имеет блоки

Доказательство. Отметим, что каждое произведение  матрицей. Следовательно,  существует и будет  матрицей. Для фиксированного  имеет  столбцов и для фиксированного  каждое  имеет  матрицы

Пусть  блока  является суммой произведений  на элементы столбца  совпадают с некоторыми элементами  строки в  определяется неравенствами

Элементы столбца  в Следовательно, 

Мы определили миноры порядка  для  определителя. В общем случае, если из  порядка

Миноры, для которых  -  матрица, то  и алгебраическое дополнение

Если квадратная матрица является произведением некоторых матриц (которые могут быть прямоугольными), то иногда важно выразить определитель произведения в терминах свойств сомножителей. Следующая теорема - мощный результат этого рода.

§7 Теорема (формула Бине-Коши)

Теорема (формула Бине-Коши)

Пусть , -  и -матрицы соответственно,

Тогда

Другими словами, при  определитель матрицы  является суммой произведений всевозможных миноров порядка  в  на соответствующие миноры матрицы  того же самого порядка.

Упражнение1. Покажем на примере

Пусть  и

Доказательство теоремы:

Так как

Определитель-это аддитивная и однородная функция каждого из своих столбцов. Используя этот факт для каждого из  столбцов в  в виде суммы  определителей:

Те члены в суммировании, которые имеют совпадающие два или более индексов  членов суммирования, в которых индексы  различны. Мы распределяем эти остающиеся члены на  групп по  членов в каждой таким образом, чтобы в каждой группе члены отличаются лишь порядком индексов

 членам, в которых

Переставляя элементы  так, чтобы первые индексы в возрастающем порядке, приводим это выражение к виду:

где   чисел

Следствие. Определитель произведения двух кратных матриц равен произведению определителй множителей.

Это следует из Теоремы при

Заключение

В данной работе рассмотрена основная теория матриц и доказательство теоремы Коши-Бине. Также представлено применение данной теоремы при нахождении определителя произведения двух прямоугольных матриц в программе написанной на языке программирования Дельфи с возможностью ввода матриц вручную и подгрузкой из файла.

Данная теорема Коши-Бине:

Пусть , -  и -матрицы соответственно,

Тогда

На примере можно рассмотреть работу программы реализующей алгоритм нахождения определителя прямоугольных матриц на основе формулы Коши-Бине.

Будем искать миноры 2 порядка:

1)

Пусть A  m = 2 n = 3

1 0 2

-1 1 1

B  m = 3 n = 2

-1 -1

-2 0

1 1

получаем матрицу C  m = 2 n = 2

1 1

0 2

Итого: Det C = 2

2)

Переборы:

1A) 1 2

1 0

-1 1

DetA = 1

1B) 1 2

-1 -1

-2 0

DetB = -2

2A) 1 3

1 2

-1 1

DetA = 3

2B) 1 3

-1 -1

1 1

DetB = 0

3A) 2 3

0 2

1 1

DetA = -2

3B) 2 3

-2 0

1 1

DetB = -2

C =  (1)*(-2) +  (3)*(0) +  (-2)*(-2)

Итого по формуле Коши - Бине: 2

Данная программа наглядно показывает нахождение миноров порядка m, где m-это количество строк в матрице

Литература

1. Гантмахер Ф.Р. Теория матриц. – 4-е изд. – М.: Наука. Гл.ред. физ. – мат. мет., 1988. с. 13-32.

2. Фаддеев Д.К. Лекции по алгебре.- М.:Наука. Гл.ред. физ. – мат. мет., 1984.-с.216.

3. Курош А.Г. Курс высшей алгебры. – 14 - е изд. - Спб.: Лань, 2005. -с.322

4. Ланкастер П. Теория матриц– М.: Наука. Гл.ред. физ. – мат. мет., 1973, с.17-44

5. Маркус М., Минк Х. Обзор по теории матриц и матричных неравенств. – М.: Наука. Гл.ред. физ. – мат. мет. , 1972, с.232

6. Большакова И.В. Высшая математика - Учебное издание, 2003, с.5-10


Приложение

Внешний вид программы:

Исходный код:

unit MainUnit;

interface

uses

  Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

  Dialogs, StdCtrls, Menus, Math, cdet;

Const

 MaxN = 10; //Максимальное число столбцов в массиве

 MaxM = 10; //Максимальное число строк в массиве

 DefValueMas = 3; //Значение по умолчанию (размерность)

type

  TVS_MAssPerebor = Array of Real; //Массив переборов

  TVS_Mass = array of array of Real; //Описали 2х мерный динамический массив

  TVS_MassData = Record  //Создаем запись - массив, в котором:

    Mass : TVS_Mass ; //Массив

    M, //Строки массива

    N : Integer; //Столцы массива

    Name : Char; //Название матрицы для вывода информации (A, B, C)

  end; {TVS_MassData = Record}

  TMainForm = class(TForm)

    MainMenu1: TMainMenu;

    N1: TMenuItem;

    NMultiplication: TMenuItem;

    N2: TMenuItem;

    InputMassB: TMenuItem;

    N3: TMenuItem;

    N4: TMenuItem;

    nDetA: TMenuItem;

    NDetB: TMenuItem;

    ResultMemo: TMemo;

    N5: TMenuItem;

    DetC: TMenuItem;

    nmbn1: TMenuItem;

    N6: TMenuItem;

    N7: TMenuItem;

    N8: TMenuItem;

    N9: TMenuItem;

    N10: TMenuItem;

    OpenDialog: TOpenDialog;

    procedure InputMassAClick(Sender: TObject);

    procedure NMultiplicationClick(Sender: TObject);

    procedure VS_MultiplicMass (Var inMassA, InMassB, MassOut : TVS_MassData);

    procedure InputMassBClick(Sender: TObject);

    procedure VS_InputMass(Var InMass : TVS_MassData);

    procedure VS_ShowMass (inCaption : String; inMass: TVS_MassData);

    procedure FormShow(Sender: TObject);

    procedure N3Click(Sender: TObject);

    procedure nDetAClick(Sender: TObject);

    function VS_Det(InMass : TVS_MassData): Real;

    procedure NDetBClick(Sender: TObject);

    procedure VS_ShowMassToMemo(Caption : String; InMass : TVS_MassData; ShowRazm : Boolean = True);

    procedure N5Click(Sender: TObject);

    procedure DetCClick(Sender: TObject);

    Procedure AssignMass(InMAss : TVS_MassData; Var OutMass : TVS_MassData);

    Procedure VS_VerMass(Var Massin1, MAssIn2: TVS_MassData);

    Procedure VS_LoadData(Var InMAss : TVS_MassData);

    Procedure VS_GetRazmOnFile(FileName : String; Var Col, Row : Integer);

    Function VS_GetColOnFile(InStr: String): Integer;

    //Миноры

    function VS_Minor(II, Jj: Integer; InMass : TVS_MassData): REal;

    Procedure VS_InitMassInStr(InStr: String; CurRow : Integer; Var InMass: TVS_MassData);

    Procedure VS_InitMassPErebor;

    Procedure VS_Init2xMassPerebot;

    Procedure VS_SortMassPerebor;

    Procedure VS_GetMAssForDet;

    Function VS_IfMassEq(Massin1, MAssIn2: TVS_MassData) : Boolean;

    Function VS_GetKoshi_Bine : Real;

    procedure VS_GenerateColMinorData(CurCol, Col : Integer; Var inMass : TVS_MassData);

    procedure VS_GenerateRowMinorData(CurCol, Col : Integer; Var InMass : TVS_MassData);

    Procedure VS_MinorMass(InMass : TVS_MassData; Var OutMass : TVS_MassData);

    procedure N6Click(Sender: TObject);

    procedure N7Click(Sender: TObject);

    procedure N8Click(Sender: TObject);

    procedure lll1Click(Sender: TObject);

    procedure N9Click(Sender: TObject);

    procedure N10Click(Sender: TObject);

  private

    { Private declarations }

  public

    { Public declarations }

  end;

var

  MainForm: TMainForm;

  MassP : TVS_MAssPerebor;

  MassPer,

  MassA,

  MassB, MassC : TVS_MassData;

    DetB,

    DetA : TVS_MAssPerebor; //Массив детерминант А

implementation

uses InRazmUnit, InMassUnit;

{$R *.dfm}

function TMainForm.VS_Det(InMass : TVS_MassData): Real;

var

  Temp, A: TVS_MassData;

  Cols, Rows, Count: Word;

  i, j, k: Integer;

begin

  Result := 1; //Результат функции по умолчанию

  If InMass.N <> InMass.M Then Exit; //если матрица не квадратная - уходим, так как решение методом диагонали

  Count := InMass.M ; // Получили размерность исходного массива

  SetLength(A.Mass, Count, Count);//Установили размер матрицы

  SetLength(Temp.Mass, 1, Count); //Установили размер мартицы

  AssignMass(InMass, A); //Во временный массив заносим данные из исходного, чтобы не портить исходный массив

  //Поиск и решение

  for i := 0 to Count - 2 do {Начало преобразования к верхнему треугольному виду}

  begin

    for j := i to Count - 1 do                                 {*  Поиск    }

    begin                                                      {*  нулевых  }

      Rows := 0;                                               {*  строк    }

      Cols := 0;                                               {*  и        }

      for k := i to Count - 1 do                               {*  столбцов }

      begin                                                    {*  в        }

        Rows := Rows + Ord(A.Mass[j, k] = 0);                  {*  матрице  }

        Cols := Cols + Ord(A.Mass[k, j] = 0);                  {*           }

      end;{for k := i to Count - 1 do}                         {*           }

      if Rows + Cols = 0 then                                  {*           }

        Break;                                                 {*           }

      if (Cols = Count - i) or (Rows = Count - i) then         {*           }

      begin                                                    {*           }

        Result := 0;                                           {*           }

        Exit                                                   {*           }

      end {if (Cols = Count - i) or (Rows = Count - i) then                 }

    end; {for j := i to Count - 1 do }                         {*           }

    if A.Mass[i, i] = 0 then

      for j := i + 1 to Count - 1 do

        if A.Mass[j, i] <> 0 then

        begin

          Result := -Result;                          {* меняем строку              }

          Temp.Mass[0] := A.Mass[i];                  {* на строку с                }

          A.Mass[i] := A.Mass[j];                     {* первым                     }

          A.Mass[j] := Temp.Mass[0];                  {* ненулевым                  }

          Break                                       {* элементом                  }

        end;

    for j := i + 1 to Count - 1 do

      if A.Mass[j, i] <> 0 then

      begin

        for k := i + 1 to Count - 1 do

          A.Mass[j, k] := A.Mass[j, k] - A.Mass[i, k] * A.Mass[j, i] / A.Mass[i, i];

        A.Mass[j, i] := 0

      end

  end; {Конец преобразования}

  for i := 0 to Count - 1 do     { Определитель как произведение }

    Result := Result * A.Mass[i, i];  { элементов на главной диагонали}

end;

procedure TMainForm.InputMassAClick(Sender: TObject);

begin

   If InRazmForm = Nil Then Application.CreateForm(TInRazmForm, InRazmForm);

   With InRazmForm do

    Begin

     Caption := 'Ввод размерности ряда А';

     Hint := Caption; //

     ShowHint := True; //Разрешаем быстрые подсказки

     lbPrompt1.Caption := 'Размерность N ';

     //Настройка эелемента ввода для размерности массива по строкам - М

     sedtRazmA.MinValue := 1; //Установили минимальное знаечение для ввода-переключателя

     sedtRazmA.MaxValue := MaxN ; //Установили максимальное значение для ввода - переключателя

     sedtRazmA.Value := MassA.N; //Установили значение, выводимое на экран

     //Настройка эелемента ввода для размерности массива по столбцам - N

     sedtRazmB.MinValue := 1; //Установили минимальное знаечение для ввода-переключателя

     sedtRazmB.MaxValue := MaxM; //Установили максимальное значение для ввода - переключателя

     sedtRazmB.Value := MassA.M; //Установили значение, выводимое на экран

     lbPrompt2.Caption := 'Размерность M ';

     btnNext.Caption := 'Далее';

     btnCancel.Caption := 'Отмена';

     If InRazmForm.ShowModal = Mrok Then //если пользователь нажал кнопку "Далее"

      Begin

       MassA.N := sedtRazmA.Value; //Сохраняем размерность массива

       MassA.M := sedtRazmB.Value; //Сохраняем размерность массива

       VS_InputMass(MassA); //Выводим сетку для ввода масива

      end; {If ShowModal = Mrok Then}

    end; {With InRazmForm do}

end; {procedure TMainForm.InputMassAClick(Sender: TObject);}

procedure TMainForm.NMultiplicationClick(Sender: TObject);

//Умножение матриц

begin

 VS_MultiplicMass(MassA, MassB, MassC); //Умножаем матрицы

 VS_ShowMassToMemo('Результат  произведения A*B получился ', MassC); //Результат выводим в Мемо

 VS_ShowMass('Итоговый результат ', MassC); //Выводим результаты расчета

end;

procedure TMainForm.VS_MultiplicMass(var inMassA, InMassB,  MassOut: TVS_MassData);

  //Умножаем матрицы

  //N, M - размерность матрицы, где

  //N - стоблец

  //M - строка

  //inMassA - массив А

  //inMassB - массив Б

  //MassOut - массив С / выходной массив

 Var P, i, j : Integer;

     S  : Real;

begin

 For I := 0 to inMassA.M - 1 do // i = 1.. m

  For J := 0 to inMassB.N - 1 do // j = 1.. k

   begin

     S := 0; //Сбнуляем счетчик

     For P := 0 to inMassA.N -1 do // p = 1..n

      S := S + inMassA.Mass[i, p] * InMassB.Mass[p, j]; //Вычисляем по формуле (Cij = Ep (Aip *Bpj)? где i=1..m, j = 1..k)

     MassOut.Mass[I, J] := s; //Сохраняем результат в массив С

   end;

 MassOut.N := inMassB.N; //Сохраняем получившиюся размерность массива С

 MassOut.M := inMassA.M; //Сохраняем получившиюся размерность массива С

end;

procedure TMainForm.InputMassBClick(Sender: TObject);

begin

   If InRazmForm = Nil Then Application.CreateForm(TInRazmForm, InRazmForm);

   With InRazmForm do

    Begin

     Caption := 'Ввод размерности ряда Б';

     Hint := Caption;

     ShowHint := True;  //Разрешаем быстрые подсказки на форме

     lbPrompt1.Caption := 'Размерность N ';

     sedtRazmA.MinValue := 1; //Установили минимальное знаечение для ввода-переключателя

     sedtRazmA.MaxValue := MaxN; //Установили максимальное значение для ввода - переключателя

     sedtRazmA.Value :=  MassB.N; //Установили значение, выводимое на экран

     sedtRazmB.MinValue := 1; //Установили минимальное знаечение для ввода-переключателя

     sedtRazmB.MaxValue := MaxM; //Установили максимальное значение для ввода - переключателя

     sedtRazmB.Value := MassB.M; //Установили значение, выводимое на экран

     lbPrompt2.Caption := 'Размерность M ';

     btnNext.Caption := 'Далее';

     btnCancel.Caption := 'Отмена';

     If ShowModal = Mrok Then //если пользователь нажал "Далее"

      Begin

       MassB.N := sedtRazmA.Value; //Сохраняем размерность массива

       MassB.M := sedtRazmB.Value; //Сохраняем размерность массива

       VS_InputMass(MassB); //Выводи окно с сеткой для ввода массива

      end{If ShowModal = Mrok Then}

    end; {With InRazmForm do}

end;

procedure TMainForm.VS_ShowMass(inCaption : String; inMass: TVS_MassData);

//Выводим массив

  //N, M - размерность матрицы, где

  //N - стоблец

  //M - строка

  //inMass - массив, который выводим

Var

I, K : Integer;

begin

  If InMassForm = Nil Then Application.CreateForm(TInMassForm, InMassForm);

  with InMassForm do

   Begin

    Caption := 'Вывод массива';

    strGrid.RowCount := InMass.M+1;

    strGrid.ColCount := inMAss.N+1;

    For I := 0 To inMAss.N -1 do //Выводим шапку для столбцов

     strGrid.Cells[I + 1, 0] :=  'N = ' +   IntToStr( I + 1);

    For I := 0 To inMAss.M -1 do //Выводим шапку для строк

     strGrid.Cells[0, I + 1] :=  'M = ' +   IntToStr( I + 1);

    btnNext.Caption := 'Ok';

    btnCancel.Visible := False; //Выключаем кнопку "Отмена". Она нам не нужна

    For I := 0  To inMAss.N -1  do //Пробегаемся по строкам

     For K := 0  To inMAss.M -1  do //Пробегаемся по столбцам

      InMassForm.strGrid.Cells[I +1,K +1] := FloatToStr(inMass.Mass[K, I]); //Выводим в сетку ранее сохраненный массив

    ShowModal; //Выводим окно, ждем реакции пользователя

    btnCancel.Visible := True; //Не забываем включить кнопку "Отмена", иначе ее не увидят в других нужных нам метсах

   end; {with InMassForm do}

End;

procedure TMainForm.FormShow(Sender: TObject);

//Обрабатываемся прри вызове формы

Var I, J : Integer;

begin

 //Обнуляем массивы, во избежание шаманских действий программы

 SetLength(MassA.Mass, MaxM , MaxN ); //Установили размер массива в памяти

 SetLength(MassB.Mass, MaxM , MaxN ); //Установили размер массива в памяти

 SetLength(MassC.Mass, MaxM , MaxN ); //Установили размер массива в памяти

 For I := 0 to MaxM - 1 Do //Пробегаемся по строкам

  For J := 0 to MaxN - 1 do //Пробегаемся по столбцам

   Begin

    MassA.Mass[I, J] := 0;

    MassB.Mass[I, J] := 0;

    MassC.Mass[I, J] := 0;

   end; {For J := 1 to MaxN do}

  //Обнуляем переменные размерностей массивов

  MassA.N := DefValueMas;   //Устанавливаем  размерность матрицы по умолчанию

  MassA.M := MassA.N;

  MassB.N := MassA.N;

  MassB.M := MassA.N;

  MassC.N := MassA.N;

  MassC.M := MassA.N;

  MassA.Name := 'A';

  MassB.Name := 'B';

  MassC.Name := 'C';

  ResultMemo.Clear; //Очищаем Мемо-поле.

end;

procedure TMainForm.VS_InputMass(var InMass: TVS_MassData);

//Вводим Элементы массива

Var

I, K : Integer;

begin

  If InMassForm = Nil Then Application.CreateForm(TInMassForm, InMassForm);

  with InMassForm do

   Begin

     Caption := 'Ввод массива';

     strGrid.RowCount := InMass.M+1; //указали количество строк рамным М

     strGrid.ColCount := InMass.N+1; //Указали количество столбцов, равным N

     For I := 0 To InMass.N -1 do //Делаем шапку для столбцов

      strGrid.Cells[I +1, 0] :=  'N = ' +   IntToStr( I +1);

     For I := 0 To InMass.M -1 do //Делаем шапку для строк

      strGrid.Cells[0, I +1] :=  'M = ' +   IntToStr( I +1);

    //Заносим результаты массива в сетку, если вводили ранее

    For I := 0 to InMass.M -1 do //Пробегаемся по строкам массива

     For K := 0 to InMass.N -1 do //Пробегаемся по столбцам массива

      Try

       strGrid.Cells[I+1, K+1] := FloatToStr (InMass.Mass[K, I]); //Выводим массив в сетку

      except

       strGrid.Cells[I+1, K+1] := '0';

      end;

    btnNext.Caption := 'Далее';

    btnCancel.Caption := 'Отмена';

    If ShowModal = Mrok Then //Выводим форму, ждем реакции пользователя

     Begin

      SetLength(MassA.Mass, InMass.M +1 , InMass.N +1); //Установили размер массива в памяти

      For I := 0  To InMass.N -1  do //Пробегаемся по строкам массива

       For K := 0  To InMass.M -1  do //Пробегаемся по столбцам массива

        Try //Включаем обработку ошибок

          InMass.Mass[K, I] := StrToInt(InMassForm.strGrid.Cells[I +1,K +1]); // Заносим элемент из сетки в массив

        except //Если произошла ошибка, например с переводом строки в число

        InMass.Mass[I, K] := 0; //Если ошибка - заносим в массив 0

        end; {except}

      VS_ShowMassToMemo('Успешно введена матрица ',InMass); //Выводим матрицу в Мемо

     end;{If ShowModal = Mrok Then}

   end;

end;

procedure TMainForm.N3Click(Sender: TObject);

//Выводим результат. Просто выводим массив

begin

  VS_ShowMass('', MassC)

end;

procedure TMainForm.nDetAClick(Sender: TObject);

//Определяем определитель матрицы А

Var Det : Real;

begin

 Det := VS_Det(MassA); //ВЫчисляем определитель

 ResultMemo.Lines.Add('Определитель матрицы А равен  ' + FloattoStr(Det));  //Выводим результат в Мемо

 ShowMessage(FloatToStr(Det)); //Выводим результат в диалоговое окно

end;

procedure TMainForm.NDetBClick(Sender: TObject);

//Определяем определитель матрицы B

Var Det : Real;

begin

 Det:= VS_Det(MassB); //Вычисляем определитель

 ResultMemo.Lines.Add('Определитель матрицы B равен  ' + FloattoStr(Det)); //Результат вычислений выводим в МЕмо

 ShowMessage(FloatToStr(Det)); //Результат выводим в диалоговое окно

end;

procedure TMainForm.VS_ShowMassToMemo(Caption : String; InMass: TVS_MassData; ShowRazm : Boolean = True);

//Выводим массив в МЕмо

Var S : String;

    I, J : Integer;

begin

 If ShowRazm Then ResultMemo.Lines.Add(Caption + InMass.Name + '  m = ' + IntToStr(InMass.M) + ' n = ' + IntToStr(InMass.n))

 Else ResultMemo.Lines.Add(Caption );

 For I := 0 to  InMass.M - 1 do //Пробегаемся по строкам

 Begin

  S := ''; //Готовимся к формированию строки

  For J := 0 To InMass.N -1 Do //Пробегаемся по столбцам

    S := S + FloatToStr(InMass.Mass[i,j]) + ' ';  //Формируем строку элементов

  ResultMemo.Lines.Add(S); //Выводим строку в Мемо

 end;{For I := 0 to  InMass.M - 1 do //Пробегаемся по строкам}

end;

procedure TMainForm.N5Click(Sender: TObject);

Var DetA, DetB, Det : Real;

begin

ResultMemo.Clear;

//Решаем det C обычным способом

VS_VerMass(MAssA, MAssB); //Проверяем массивы. Если в первом массиве число столбцов меньше, чем во втором, меняем матрицы местами

ResultMemo.Lines.Add('1)');

VS_ShowMassToMemo('Пусть ',  MassA); //Выводим матрицу А

VS_ShowMassToMemo('', MassB); //Выводим матрицу Б

VS_MultiplicMass(MassA, MassB, MassC); //Умножаем матрицы

VS_ShowMassToMemo('получаем матрицу ', MassC); //Выводим матрицу С

Det := VS_Det(MassC);

ResultMemo.Lines.Add('Итого: Det C = ' + FloatToStr(Det));

ResultMemo.Lines.Add('2)');

//Решаем по Бине-Коши

If (MassA.M > MassA.N) Then

 Begin //попали под условие, когда М>n , значит определитель равен 0

  ResultMemo.Lines.Add('m > n массива А , исходя из т. Бине - Коши, DetC = 0');

  Exit //Завершаем процедуру

 end;

//If (MassB.M > MassB.N) Then

// Begin //попали под условие, когда М>n , значит определитель равен 0

//  ResultMemo.Lines.Add('m > n массива B , исходя из т. Бине - Коши, DetC = 0');

//  Exit//Завершаем процедуру

// end;

If (MassA.M = MassA.N) And (MassA.M = MassA.N)

 Then //попали под условие, когда обе матрицы кувадратные

  Begin

   ResultMemo.Lines.Add('m = n массивов B и А, исходя из т. Бине - Коши, ');

   DetA := VS_Det(MassA);

   DetB := VS_Det(MassB);

   Det := DetA * DetB;

   ResultMemo.Lines.Add('DetC = detA * Det B = '  + FloatToStr(DetA) + ' * ' + FloatToStr(DetB) + ' = ' + FloatToStr(Det));

  end;

If (MassA.M < MassA.N) And (MassB.M > MassB.N) Then

 Begin

  IF VS_IfMassEq(MAssA, MAssB)

   Then

     BEgin

      VS_VerMass(MAssA, MAssB);

      VS_InitMassPErebor;

      VS_Init2xMassPerebot  ;

      VS_SortMassPerebor;

      VS_GetMAssForDet;

      ResultMemo.Lines.Add('Итого по формуле Коши - Бине: ' + FloattoStr(VS_GetKoshi_Bine))

     end{IF VS_IfMassEq(MAssA, MAssB)}

    Else ResultMemo.Lines.Add('Матрицы не равны')

 end;{If (MassA.M < MassA.N) And (MassB.M > MassB.N) Then}

end;

procedure TMainForm.DetCClick(Sender: TObject);

Var Det : Real;

begin

 Det := VS_Det(MassC); //ВЫчисляем определитель

 ResultMemo.Lines.Add('Определитель матрицы C равен  ' + FloattoStr(Det));  //Выводим результат в Мемо

 ShowMessage(FloatToStr(Det)); //Выводим результат в диалоговое окно

end;

function TMainForm.VS_Minor(II, Jj: Integer; InMass : TVS_MassData): REal;

//Вычислаем минор

Var

Col, //Текущий столбец новой матрицы

Row, //Текущая строка новой матрицы

  I, J : Integer;

    TempMass : TVS_MassData;

begin

 If InMass.M <> InMass.N Then Exit; // Матрица не квадратная - убегаем

 SetLength(TempMass.Mass, InMass.M -1, InMass.N -1);//Установили размер матрицы

 Row := 0;

 For I := 0 To InMass.M -1 Do

  begin

   Col := 0; //Начали новый массив с первого элемента

   If I <> II -1 Then

    Begin //Отбрасываем  I строку

      For J := 0 To InMass.N -1 do

       If J <> JJ -1 Then

        Begin //Перебираем все столюцы, кроме J

         TempMass.Mass[Row,Col] := InMass.Mass[I,J];

         Inc(Col);

        end;{If J <> JJ Then}

      Inc(Row); //Перешли на сл. строку для нового массива

    end;{If I <> II Then}

  end; {For I := 0 To InMass.M Do}

TempMass.M := InMass.M - 1;

TempMass.N := InMass.N - 1;

Result := VS_Det(TempMass);

end;

procedure TMainForm.AssignMass(InMAss: TVS_MassData;

  var OutMass: TVS_MassData);

//Передаем данные из InMass в OutMass;

Var

I,

J : Integer;

begin

  for i := 0 to InMAss.M - 1 do   //Пробегаемся по строкам

    for j := 0 to InMAss.N - 1 do //Пробегаемся по столбцам

      OutMass.Mass[i, j] := InMass.Mass[i, j]; //Переносим значения из InMAss в OutMas

 OutMass.M := InMAss.M; //Переносим число, определяющее количество строк

 OutMass.N := InMAss.N; //Переносим число, определяющее количество столбцов

 OutMass.Name := InMAss.Name; //Переносим название массива

end;

procedure TMainForm.VS_MinorMass(InMass : TVS_MassData; var OutMass: TVS_MassData);

//Находим все миноры входящей матрицы

//InMass - массив, в котором будем искать миноры

//OutMass - массив минор

Var

i,

j : Integer;

begin

 If InMass.M <> InMass.N Then Exit; //Вышли, так как мартица не квадратная

 For I := 0 to InMass.M - 1 Do //пробегаемся по строкам

  For J := 0 To InMass.N - 1 do //Пробегаемся по столбцам

   OutMass.Mass[I,J] := VS_Minor(I +1, J +1 , InMass); //Получили I, J минор и занесли в массив OutMass

 OutMass.M := InMass.M;

 OutMass.N := InMass.N;

end;

procedure TMainForm.N6Click(Sender: TObject);

begin

 VS_MinorMass(MassA, MassC);

 VS_ShowMass('Минор', MassC);

 VS_ShowMassToMemo('Минор', MassC);

end;

procedure TMainForm.N7Click(Sender: TObject);

begin

 VS_MinorMass(MassB, MassC);

 VS_ShowMass('Минор', MassC);

 VS_ShowMassToMemo('Минор', MassC);

end;

procedure TMainForm.N8Click(Sender: TObject);

begin

 VS_MinorMass(MassC, MassC);

 VS_ShowMass('Минор', MassC);

 VS_ShowMassToMemo('Минор', MassC);

end;

procedure TMainForm.lll1Click(Sender: TObject);

begin

IF VS_IfMassEq(MAssA, MAssB)

Then

 BEgin

  VS_VerMass(MAssA, MAssB);

  VS_InitMassPErebor;

  VS_Init2xMassPerebot  ;

  VS_SortMassPerebor;

  VS_GetMAssForDet;

  ResultMemo.Lines.Add('Итого по форуме Коши - Бине: ' + FloattoStr(VS_GetKoshi_Bine))

 end

Else ResultMemo.Lines.Add('Матрицы не равны')

end;

procedure TMainForm.VS_InitMassPErebor;

//Создаем массив переборов для вычесления Детерминант формулы Коши-Бине

// Все действия делаются над массивом MAssP

Var

I, J, Curr : Integer;

begin

 Curr := 0; //Текущий элемент массива

 SetLength(MassP, MassA.N * MassA.M); //Установили размерность

 For I := 0 to MassA.M -1 do //Пробегаемся по строкам

  For J := 0 to MassA.N -1 do //Пробегаемся по столбцам

    Begin

     MassP[Curr] := J +1; //Заполняем массив строками-перестановками/столбцами-перестановками

     Inc(Curr); //Перешли к след. элеенту массива

    end;

//VS_SortMassPerebor

end;

procedure TMainForm.VS_GetMAssForDet;

//Формуриуем массив для вычисления Дет.

//Данные перестановки уже должны хранится в массиве MassP

//т. е уже нужно иметь Массив А и уже должна быть выполнена VS_InitMassPErebor;

Var I, J : Integer;

    Det : Real;

    SA, SB : String;

    TempB,

    TempA :  TVS_MassData; //Н*М мерный массив миноров

begin

ResultMemo.Lines.Add('Переборы: ');

SetLength(TempA.Mass, MAssA.M, MAssA.M);

SetLength(TempB.Mass, MAssB.N, MAssB.N);

SetLength(DetA, MassA.N);

SetLength(DetB, MassB.M);

TEmpA.M := MAssA.M;

TEmpA.N := MAssA.M;

TEmpB.M := MAssB.N;

TEmpB.N := MAssB.N;

For I := 0 to MassPer.M - 1 do //пробегаемся по строкам

 Begin

  SA:= IntToStr(I +1) + 'A) ';

  SB:= IntToStr(I +1) + 'B) ';

  For J := 0 to MassPer.N - 1 do //Пробегаемся по всем столбцам -1

   begin

    SA:= SA + FloatToStr(MassPer.Mass[I, J]) + ' ';

    SB:= SB + FloatToStr(MassPer.Mass[I, J]) + ' ';

    VS_GenerateColMinorData(J, Trunc(MassPer.Mass[I, J]), TempA);

    VS_GenerateRowMinorData(J, Trunc(MassPer.Mass[I, J]), TempB);

   end;{For J := 0 to MassPer.N - 1 do //Пробегаемся по всем столбцам -1}

   ResultMemo.Lines.Add('');

   ResultMemo.Lines.Add(SA);

   VS_ShowMassToMemo('', TempA, False);

   DetA[I] := VS_Det(TempA);

   ResultMemo.Lines.Add('DetA = ' + FloatToStr(Deta[I]));

   ResultMemo.Lines.Add('');

   ResultMemo.Lines.Add(SB);

   VS_ShowMassToMemo('', TempB, False);

   DetB[I] := VS_Det(TempB);

   ResultMemo.Lines.Add('DetB = ' + FloatToStr(DetB[I]));

 end;{For I := 0 to MassPer.M - 1 do //пробегаемся по строкам}

end;

procedure TMainForm.VS_GenerateColMinorData(CurCol, Col: Integer;

  var inMass: TVS_MassData);

//Формируем массив минор для КоШИ_БИНЕ

//На входе

//CurCol - номер столбюца в новом массиве

//COl - номер столбца для массива, с которого будем брать значения

//InMass - массив, в который будем заносить значения

Var I : Integer;

begin

 For I := 0 To MassA.M -1 do

   inMass.Mass[I, CurCol] := MassA.Mass[I, Col -1];

end;

procedure TMainForm.VS_SortMassPerebor;

//Сортируем элементы массива переборов для правильного вычисления миноров

Var

K, I, J, Curr : Integer;

Rez : Real;

begin

For I := 0 to MassPer.M - 1 do //пробегаемся по строкам

 For J := 0 to MassPer.N - 2 do //Пробегаемся по всем столбцам -1

  For K := J + 1 to MassPer.N - 1 do

   If MassPer.Mass[I, j] > MassPer.Mass[I, K] Then //Текущий элемент больше следующего - меняем местами

    Begin

     REz := MassPer.Mass[I, j];

     MassPer.Mass[I, j] := MassPer.Mass[I, K];

     MassPer.Mass[I, K] := Rez;

    end;

end;

procedure TMainForm.VS_Init2xMassPerebot;

//Формируем 2хмерный массив переборов

//На выходе будет M*N мерный массив переборов (не сортированый)

Var I, J, Curr, CurCol, CurRow : Integer;

    Det : Real;

    S : String;

begin

 Curr := 0; //Текущий элемент в массиве MassP

 SetLEngth(MassPer.Mass, MassA.N, MassA.M); //Установвили размерность массива перестановок

 MassPer.M := MassA.N; //Задали размерность

 MassPer.N := MassA.M; //Задали размерность

 CurRow := 0; //Текущая строка нового массива

 For I := 0 to MassA.N -1  Do //Запускаем по строкам

 begin

  CurCol := 0; // Текущий столбец/строка нового массива

  For J := 0 to MassA.M - 1 do

   Begin

    MassPer.Mass[CurRow, CurCol] := MassP[Curr];

    Inc(Curr); //Перешли к новому элементу массива MassP

    Inc(CurCol); //Перешли к  нововму столбцу нового массива

   end; {For J := 0 to MassA.M - 1 do}

  Inc(CurRow); //Перешли к новой строке нового массива

  end;{For I := 0 to MassA.N -1  Do //Запускаем}

end;

procedure TMainForm.VS_GenerateRowMinorData(CurCol, Col: Integer;

  var InMass: TVS_MassData);

//Формируем массив минор для КоШИ_БИНЕ

//На входе

//CurCol - номер столбюца в новом массиве

//COl - номер столбца для массива, с которого будем брать значения

//InMass - массив, в который будем заносить значения

Var I : Integer;

begin

 For I := 0 To MassB.N -1 do

   inMass.Mass[CurCol, I ] := MassB.Mass[Col -1,I];

end;

Function  TMainForm.VS_GetKoshi_Bine: Real;

//Вычисляем формулу Коши-Бине

// ьПеред вызовом должны быть выполнены след. условия:

//1 - введен масив а и б

//выполнены след. процедуры

//VS_InitMassPErebor;

//VS_Init2xMassPerebot  ;

//VS_SortMassPerebor;

//VS_GetMAssForDet

//

Var I : Integer;

    S : String;

begin

 Result := 0;

 S := '';

For I := 0 to MassA.N - 1 do

 Begin

  REsult := REsult + DetA[I] * Detb[I];

  S := S +  ' (' + FloattoStr(DetA[I])+ ')*(' + FloattoStr(DetB[I] ) + ') + ';

 end;

ResultMemo.Lines.Add('C = ' + (Copy(S, 1, Length(s) -2)));

end;

function TMainForm.VS_IfMassEq(Massin1, MAssIn2: TVS_MassData): Boolean;

//Сравниваем 2 мартицы

//Получаем True, если

//1. число строк матрицы 1 - числу столбцов матрицы 2

//2. число стоблцов матрицы 1 = числу строк  матрицы 2

begin

Result := (Massin1.M = MAssIn2.N) And (Massin1.N = MAssIn2.M)

end;

procedure TMainForm.VS_VerMass(var Massin1, MAssIn2: TVS_MassData);

//Проверяем матрицы

//Если Столбцв матрицы А меньше, чем в Б, меняем матрицы местами

Var TempMass: TVS_MassData;

begin

 If Massin1.N < MAssIn2.N Then

  Begin

   SetLength(TempMass.Mass, MassIn1.M, MassIn1.N);

   TempMass := Massin1;

   SetLength(Massin1.Mass, MassIn2.M, MassIn2.N);

   Massin1 := MAssIn2;

   SetLength(Massin2.Mass, TempMass.M, TempMass.N);

   MAssIn2 := TempMass;

  end;

end;

procedure TMainForm.VS_LoadData(var InMAss: TVS_MassData);

//Загружаем данные из файла в Массив InMAss

Var F : TextFile; //Описали переменную работы с текстовым файлом

    RezStr : String;

    CurRow,

    MaxCol,

    MaxRow,

    CorCol : Integer;

begin

 OpenDialog.DefaultExt := '*.txt'; //Расширение файлов по умочлчанию

 OpenDialog.InitialDir := ExtractFilePath(Application.ExeName); //Открываем каталог, в котором запущена наша программа

 MaXcol := 0;

 ;

 If OpenDialog.Execute Then

  Begin //Если пользователь нажал на ОК и выбрал файл - начинаем загрузку

   AssignFile(F, OpenDialog.FileName);

   If FileExists(OpenDialog.FileName) Then

      Reset(f) //Файл есть, открываем

   Else Exit; //Файла нету, выходим

   CurRow := 0;

   VS_GetRazmOnFile(OpenDialog.FileName, MaxCol, MaxRow);

   SetLEngth(InMAss.Mass, MaxRow, MaxCol);

   While Not Eof(F) Do

    Begin

     REadLn(F, RezStr);

     VS_InitMassInStr(RezStr, CurRow, InMAss);

//     ResultMemo.Lines.Add(RezStr);

     Inc(CurRow);

    end;{While Not Eof(F) Do}

    InMass.M := MaxRow;

    InMAss.N := MaxCol;

    VS_ShowMassToMemo('Успешно загружен', InMAss);

  end;{If OpenDialog.Execute Then}

end;

procedure TMainForm.N9Click(Sender: TObject);

begin

  VS_LoadData(MassA);

end;

procedure TMainForm.VS_InitMassInStr(InStr: String; CurRow: Integer;

  var InMass: TVS_MassData);

//Формируем строку элементов массива.

Var

 N : Integer;

 RezStr : String;

 CurCol : Integer;

begin

 inStr := Trim(InStr); //Удалили пробелы с обоих концов строки

 CurCol := 0;

 While Length(InStr) > 0 Do

  Begin //Запускаем цикл до тех пор, пока строка имеет значения

   N := Pos(#32, InStr); //Нашли ближайший пробел

   If N <> 0 Then

    Begin // Действительно у нас нашелся прьблел

     RezStr := Copy(inStr, 1, N);

     Delete (inStr,1, N);

     RezStr := Trim(RezStr); //Удалили лишние пробелы

     Try //Включаем обработку ошибок

      InMass.Mass[CurRow, CurCol] := StrtoFloat(RezStr); //Присваиваем элемент массива из строк

     except //Если авария

      InMass.Mass[CurRow, CurCol] := 0; //Присваиваем элемнту 0

     end;

     Inc(CurCol);//Перешли к след. стобцу массива

    end {If N <> 0 Then}

   Else

     //Пробела нету, возможно, это последний символ

     If Length(InStr)> 0 Then

      Begin //Есть значение

     Try //Включаем обработку ошибок

      InMass.Mass[CurRow, CurCol] := StrtoFloat(InStr); //Присваиваем элемент массива из строк

     except //Если авария

      InMass.Mass[CurRow, CurCol] := 0; //Присваиваем элемнту 0

     end;

       Inc(CurCol);//Перешли к след. стобцу массива

       InStr := '';

      end; {If Length(InStr)> 0 Then}

  end;

end;

procedure TMainForm.VS_GetRazmOnFile(FileName: String; var Col,

  Row: Integer);

 Var F : TextFile; //Описали переменную работы с текстовым файлом

     RezStr : String;

begin

 Col := 0;

 Row := 0;

 AssignFile(F, FileName);

 Reset(F);

 While Not Eof(F) Do

  Begin

   ReadLn(F, RezStr);

   If (Row = 0) And (Length(RezStr)<> 0) Then Col := VS_GetColOnFile(RezStr);

   Inc(Row);

  end;{While Not Eof(F) Do}

  CloseFile(f);

end;

function TMainForm.VS_GetColOnFile(InStr: String): Integer;

Var

 N : Integer;

 RezStr : String;

begin

 inStr := Trim(InStr); //Удалили пробелы с обоих концов строки

 Result := 0;

 While Length(InStr) > 0 Do

  Begin //Запускаем цикл до тех пор, пока строка имеет значения

   N := Pos(#32, InStr); //Нашли ближайший пробел

   If N <> 0 Then

    Begin // Действительно у нас нашелся прьблел

     RezStr := Copy(inStr, 1, N);

     Delete (inStr,1, N);

     RezStr := Trim(RezStr); //Удалили лишние пробелы

     Inc(Result);//Перешли к след. стобцу массива

    end {If N <> 0 Then}

   Else

     //Пробела нету, возможно, это последний символ

     If Length(InStr)> 0 Then

      Begin //Есть значение

       Inc(Result);//Перешли к след. стобцу массива

       InStr := '';

      end; {If Length(InStr)> 0 Then}

  end;

end;

procedure TMainForm.N10Click(Sender: TObject);

begin

VS_LoadData(MassB);

end;

end.

Язык: Русский

Скачиваний: 700

Формат: Microsoft Word, MatLab, Delphi

Размер файла: 581 Кб

Автор:

Скачать работу