Адгезионные свойства металлов и полупроводников в рамках диэлектрического формализма — страница 3

  • Просмотров 1557
  • Скачиваний 77
  • Размер файла 53
    Кб

Для определения закона дисперсии собственных поверхностных плазменных колебаний , соответствующих величине зазора между материалами l и , необходимо подставить диэлектрические проницаемости материалов из (7) в дисперсионное уравнение (4). Для случая дисперсионное уравнение (4) приводит к соотношениям : (9) определяющим частоты поверхностных плазмонов на границе раздела n-го материала с вакуумом.Откуда с учетом (7) получаем: (10)

Решение дисперсионного уравнения (4) в случае произвольного l приводит к следующим выражениям для поверхностных плазменных частот : (11) где использованы обозначения j=1,2 , соответствующие в (11) знакам , Для расчета энергии взаимодействия материалов необходимо полученные выражения (10), (11) для и подставить в (6) и проинтегрировать по волновым векторам. Но здесь следует учитывать,что поверхностные плазмоны при некотором критическом

значении волнового вектора kc , определяемом условием (12) распадаются, передавая свою энергию и импульс одиночным фермиевским электронам [6]. Это означает,что при k<kc плазмон не может существовать как когерентное движение всех электронов, т.е. он становится практически ненаблюдаемым.Каждая из плазменных мод для различных материалов развязана при и характеризуется своим критическим значением волнового вектора kcn. В связи с этим

необходимо в расчетах по формуле (6) проводить интегрирование по волновым векторам k < kcmin , где kcmin соответствует минимальному из значений критических волновых векторов kcn рассматриваемых материалов. Тем самым принимается во внимание вклад во взаимодействие E(l) только коллективных состояний.Энергия адгезии двух различных материалов непосредственно связана с энергией взаимодействия E(l). ТакE (l)= -2Ea(l) [7] и, следовательно,итоговая

расчетная формула для энергии адгезии материалов,разделенных зазором l, принимает вид (13) Рис. 2: Энергия адгезии ряда металлов и полупроводников в зависимости от величины вакуумного промежутка l между поверхностями материалов: 1 - Cr-Fe; 2 - Fe-Cu; 3 - Cu-Al; 4 - Ge-ZnS; 5 - Al-InSb. Рис. 3: Сила адгезии ряда металлов и полупроводников в зависимости от величины вакуумного промежутка l между поверхностями материалов: 1 - Cr-Fe; 2 - Fe-Cu; 3 - Cu-Al;4 - Ge-ZnS; 5 -Al-InSb. На

рис.1 приведены результаты расчета на ПЭВМ энергии адгезии для ряда простых и переходных металлов, а также полупроводников в зависимости от величины зазора l. Для расчета были использованы экспериментальные значения плазменных частот [5]. Сила адгезионного взаимодействия различных материалов как функция величины зазора l между ними может быть получена дифференцированием энергии адгезии Ea12(l) по l, т.е. (14) Следует отметить,что во