Алгебраические кривые и диофантовы уравнения

  • Просмотров 2562
  • Скачиваний 42
  • Размер файла 74
    Кб

Алгебраические кривые и диофантовы уравнения Ханспетер Крафт Те, кому посчастливилось ходить на уроки математики ещё до введения теории множеств в школьную программу, несомненно, помнят теорему Пифагора, : В прямоугольном треугольнике сумма площадей квадратов, построенных на катетах, равна площади квадрата, построенного на гипотенузе (рис.1). Эта теорема была известна в Вавилонии уже во времена Хаммурапи, а возможно, её

знали и в древнем Египте, однако впервые она была доказана, по-видимому, в пифагорейской школе. Так называлась группа интересующихся математикой философов по имени основателя школы Пифагора (ок. 580–500 г. до н. э.) – личности довольно мифической. Это был мистик, учёный и политик аристократического толка. Он, должно быть, путешествовал по Вавилонии и Египту, а позднее на юге Италии, в Кротоне, собрал вокруг себя кружок увлечённых

юношей, из которого и возникла пифагорейская школа. В настоящее время уже невозможно установить, какие достижения пифагорейцев принадлежат самому учителю, а какие следует приписать его ученикам. Рис.1 Рис.2 Пусть длины сторон прямоугольного треугольника ABC (рис.2) обозначены через a, b, c, причём сторона длины c находится напротив прямого угла. Теорема Пифагора утверждает справедливость равенства (1) a2 + b2 = c2. Оно выполняется,

например, если вместо a, b, c подставить числа 3, 4, 5, или 5, 12, 13, или 41, 140, 149. Такие решения уравнения (1) в целых положительных числах нашли уже пифагорейцы, и потому такие решения называют пифагоровыми тройками. Вполне возможно, что поиски этих троек и привели к теореме Пифагора. Впрочем, тройка (3, 4, 5) была известна значительно раньше, о чём свидетельствует, скажем, дошедший до нас диалог императора Чжоу-гуна (ок. 1100 г. до н. э.) и учёного

Шан Гао ([2], стр. 54–65); более подробно о тройке (3, 4, 5) рассказывается в предыдущей лекции Ю. Рольфса. Зададимся вопросом, сколько существует пифагоровых троек. Очевидно, умножая все три числа на любое целое n, можно из тройки (a, b, c) получить бесконечно много новых троек; из тройки (3, 4, 5) возникает таким образом последовательность троек (3, 4, 5) (6, 8, 10), (9, 12, 15), (12, 16, 20), ... . Поэтому уточним поставленный вопрос и будем искать простейшие