Алгебраическое и графическое решение уравнений, содержащих модули

  • Просмотров 1821
  • Скачиваний 37
  • Размер файла 129
    Кб

Алгебраическое и графическое решение уравнений, содержащих модули Цель работы: хотя уравнения с модулями ученики начинают изучать уже с 6-го – 7-го класса, где они проходят самые азы уравнений с модулями. Я выбрал именно эту тему, потому что считаю, что она требует более глубокого и досканального исследования. Я хочу получить более широкие знания о модуле числа, различных способах решения уравнений, содержащих знак абсолютной

величины. 1. Введение: Слово «модуль» произошло от латинского слова «modulus», что в переводе означает «мера». Это многозначное слово(омоним), которое имеет множество значений и применяется не только в математике, но и в архитектуре, физике, технике, програмировании и других точных науках. В архитектуре-это исходная еденица измерения, устанавливаемая для данного архитектурного сооружения и служащая для выражения кратных

соотношений его составных элементов. В технике-это термин, применяемый в различных облостях техники, не имеющий универсального значения и служащий для обозначения различных коэффициентов и величин, например модуль зацепления, модуль упругости и .т.п. Модуль объемного сжатия( в физике)-отношение нормального напряжения в материале к относительному удлинению. 2. Понятия и определения Чтобы глубоко изучать данную тему, необходимо

познакомиться с простейшими определениями, которые мне будут необходимы: Уравнение-это равенство, сродержащее переменные. Уравнение с модулем-это уравнение, содержащие переменную под знаком абсолютной величины(под знаком модуля).Например: |x|=1 Решить уравнение-это значит найти все его корни, или доказать, что корней нет. В математике модуль имеет несколько значений, но в моей исследовательской работе я возьму лишь одно:

Модуль-абсолютная величина числа, равная расстоянию от начала отсчета до точки на числовой прямой. 3. Доказательство теорем Определение. Модуль числа a или абсолютная величина числа a равна a, если a больше или равно нулю и равна -a, если a меньше нуля: Из определения следует, что для любого действительного числа a, Теорема 1. Абсолютная величина действительного числа равна большему из двух чисел a или -a. Доказательство 1. Если число a