Аналитический метод в решении планиметрических задач — страница 8

  • Просмотров 6631
  • Скачиваний 67
  • Размер файла 388
    Кб

полуплоскости (т.е. принадлежащие левой плоскости без граничной прямой Оу), этим свойством не обладают ( для них ). Аналитические условия, определяющие I координатную четверть, представляют собой конъюнкцию двух предикатов: , которые задают эту четверть как пересечение двух полуплоскостей: верхней (задаётся условием ) и правой (задается условием ). Аналогично, II четверть: ; III четверть: ; IV четверть: . Из рассмотренных примеров видим,

что аналитическое задание линий (или, как еще говорят, кривых линий, или, короче, кривых) приводит к уравнениям с двумя неизвестными х, у вида: F (х, у) = 0 Здесь следует отметить, что дать строгое определение понятию линии в том адекватном смысле, в каком мы осознаем эти математические объекты с интуитивной точки зрения, весьма непросто. Понятие линии является одним из сложных понятий математики. Самое общее определение этого

понятия рассматривается в топологии. Это понятие впервые было определено математиком П.С. Урысоном в 20-х годах XX века. Ограничимся пока следующими двумя определениями. Определение. Уравнением данной линии L в заданной системе координат R = {О; 1, 2} называется такое уравнение F (х, у) = 0 с двумя неизвестными х, у, которому удовлетворяют координаты х, у каждой точки этой линии (т.е. будучи представлены в это уравнение превращают его в

верное равенство) и не удовлетворяют координаты никакой точки, не принадлежащей этой линии. М (х, у) – текущая точка линии L; х, у – текущие координаты. Определение. Линией, определяемой уравнением F (х, у) = 0 в заданной системе координат R = {О; 1, 2}, называется множеством (или совокупность, или геометрическое место) всех точек плоскости, координаты которых удовлетворяют данному уравнению. L ={М (х, у): F (х, у) = 0}. Здесь необходимо отметить,

что сформулированное определение линии оказывается весьма широким, так что под него попадают объекты, никак не отвечающие нашему наглядному (интуитивному) представлению о линии. Другими словами, далеко не каждое уравнение вида F (х, у) = 0 определяет на координатной плоскости геометрическую фигуру, которую мы склонны считать линией. В качестве примера приведем два уравнения. Первое х - |х| = 0, как легко видеть, определяет на

координатной плоскости правую полуплоскость, так как оно равносильно неравенству: . Второе х+у-|х|-|у|=0 равносильно системе (конъюнкции) двух неравенств и потому определяет на плоскости одну точку, а уравнение х2 + у2 + 1 = 0 вообще не определяет на плоскости никакой геометрической фигуры. Для того чтобы уравнение вида F (х, у) = 0 определяло геометрическую фигуру, отвечающую нашему наглядному представлению о линии, следует, вообще