Архитектура квантовых компьютеров — страница 6

  • Просмотров 5971
  • Скачиваний 316
  • Размер файла 98
    Кб

эволюция квантового компьютера приобретет случайный (диффузионный) характер. Время декогерентизации, как правило, будет меньше времени, необходимого для выполнения сложного алгоритма, состоящего из большого числа (-109) вентилей. Выход из этой, казавшейся тупиковой, ситуации был найден в применении методов квантовой коррекции ошибок. Методы коррекции ошибок хорошо известны из теории обычных (классических) компьютеров. Смысл их

в том, что логические |0> и |1> кодируются большим числом битов; анализ кодовых комбинаций позволяет найти и удалить ошибку. Эти методы удалось разработать в квантовом варианте, где ошибки могут быть фазовыми и амплитудными. Выяснилось, что если вероятность ошибки при выполнении одной элементарной операции ниже некоторого порогового уровня, вычислительный процесс можно длить сколь угодно долго. Это означает, что операции

квантовой коррекции ошибок удаляют из компьютера больше ошибок, чем вносят. Этот вывод очень важен: по существу, он имеет силу теоремы существования полномасштабного квантового компьютера. ГЛАВА 3: Архитектура квантовых компьютеров 3.1 Принципиальная схема квантового компьютера Квантовые методы выполнения вычислительных операций, а также передачи и обработки информации, уже начинают воплощаться в реально функционирующих

экспериментальных устройствах, что стимулирует усилия по реализации квантовых компьютеров. Квантовый компьютер состоит из n кубитов и позволяет проводить одно- и двухкубитовые операции над любым из них (или любой парой). Эти операции выполняются под воздействием импульсов внешнего поля, управляемого классическим компьютером. Принципиальная схема работы любого квантового компьютера может быть представлена следующим

образом (рис.4). Основной его частью является квантовый регистр - совокупность некоторого числа L кубитов. До ввода информации в компьютер все кубиты регистра должны быть приведены в основные базисные (булевые) состояния. Эта операция называется подготовкой начального состояния или инициализацией (initializing). Далее каждый кубит подвергается селективному воздействию, например, с помощью импульсов внешнего электромагнитного поля,

управляемых классическим компьютером, которое переведет основные базисные состояния определенных кубитов в не основное состояния |0ñ Þ |1ñ. При этом состояние всего регистра перейдет в суперпозицию базисных состояний вида |nñ = |n1,n2,n3,...nLñ, где ni = 0,1. (Рис. 4) – схематическая структура квантового компьютера При вводе информации в квантовый компьютер состояние входного регистра, с помощью соответствующих импульсных