Бесконечные антагонистические игры — страница 6

  • Просмотров 2101
  • Скачиваний 37
  • Размер файла 163
    Кб

будет yo = 0. Следовательно, игрок 2 имеет оптимальную чистую стратегию yo = 0. Замечание. В приведённом выше примере мы могли определить оптимальную стратегию игрока 1, а игрока 2 - только случайно, в силу “удачного” вида М(х, y). Рассмотрим теперь метод определения оптимальных стратегий того игрока, для которого функция выигрышей не обязательно выпукла. Пусть непрерывная функция М(х, y), заданная на единичном квадрате, выпукла по y. Нас

будет интересовать вопрос нахождения оптимальных стратегий 1 игрока. Предположим также, что для х [0; 1], y [0; 1] существует частная производная функции М(х, y) по y, причём в точках y = 0 и y = 1 (х, y) = понимается как правая и левая производная соответственно. Обозначим через yo одну из оптимальных чистых стратегий игрока 2 (эта стратегия существует в соответствии с теоремой 4). Согласно теореме 2 чистые стратегии х игрока 1 могут входить в

его оптимальную стратегию с положительной вероятностью, если для них выполняется равенство М(х, yo) = V. Такие чистые стратегии х называются существенными. Теорема 5. Пусть дана бесконечная антагонистическая игра с непрерывной и дифференцируемой по y на единичном квадрате при любом х функцией выигрышей М(х, y), с оптимальной чистой стратегией yo игрока 2 и ценой игры V, тогда : 1) если yo = 1, то среди оптимальных стратегий игрока 1 имеется

существенная чистая стратегия х1, для которой (х1, 1)  1; 2) если yo = 0, то среди оптимальных стратегий игрока 1 имеется существенная чистая стратегия х2, для которой (х2, 0)  0; 3) если 0  yo  1, то среди оптимальных стратегий игрока 1 найдётся такая, которая является смесью двух существенных стратегий х1 и х2. Для этих стратегий (х1, yo)  0, (х2, yo)  0, стратегия х1 употребляется с вероятностью , стратегия х2 – с вероятностью (1  ), где 

находится из уравнения (х1, yo) + (1  )(х2, yo) = 0. Пример. Пусть функция выигрышей в бесконечной антагонистической игре задана на единичном квадрате и равна М(х, y) = (х  y)2 = х2  2хy + y2. Эта функция непрерывна по х и y, и поэтому эта игра имеет решение. Кроме того = 2 > 0. Следовательно, М(х, y) выпукла по y, и поэтому согласно теореме 4 цена игры определяется по формуле (1), игрок 2 имеет чистую оптимальную стратегию yo, определяемую из уравнения

(2). Таким образом, имеем V = (x  y)2; Для определения (x2  2xy + y2) последовательно найдём = 2x  2y := 0  x = y = 2 > 0  при x = y функция M имеет минимум для любого y.  максимум достигается в одной из крайних точек x = 0 и (или) x = 1 M(0; y) = y2 M(1; y) = 1  2y + y2 = (y  1)2 V= max {y2; (1  y)2} Данный max {...} достигается в том случае, если y2 = (1  y)2, т.е. y = . Следовательно V = при yo = . Определим теперь оптимальные стратегии для игрока 1. Поскольку yo = , то 0 < yo < 1. Согласно теореме