Билеты по геометрии (11 класс)

  • Просмотров 2889
  • Скачиваний 41
  • Размер файла 40
    Кб

Билет № 3 Взаимное расположение прямой и плоскости в пространстве Объем призмы. 1.Три случая расположения прямой и плоскости. 1.Плоскость и прямая имеют одну оющую точку   2.Прямая лежит в плоскости а значит имеет с ней 2 общие точки. 1.Пряммая и плоскость не имеют общих точек т.е. a 2.Теорема: Объем прямой призмы равен произведению площади основания на высоту. Д-во: Рассмотрим правильную 3-угольную призму АВСА1В1С1с объемом V

и высотой h. Проведем такую высоту ∆АВС (ВD) кот. разделит этот ∆на 2 ∆. Поскольку ВВ1D разделяют данную призму на 2 призмы , основания кот является прямоугольный ∆ABD и ВСD. Плэтому объем V1 и V2 соответственно равны SABD ·h и SВСD ·h. По св-ву 20 объемов V=V1+V2 т.е V= SABD ·h+ SВСD ·h= (SABD+ SВСD) h. Т.о. V=SАВС·h Д-во Возьмем произвольную прямую призму с высотой h и площадью основания S. Такую призму можно разбить на прямые треугольные призмы с высотой h.

Выразим объем каждой треугольной призмы по формуле (1) и сложим эти объемы. Вынося за скобки общий множитель h, получим в скобках сумму площадей оснований треугольных призм, т. е. площадь S основания исходной призмы. Таким образом, объем исходной призмы равен произведению Sh. Теорема доказана. Рассмотрим случай , когда призмая является частью параллелепип-ида. Диогональное сечение делит параллелепипед на 2 равные треугольные

призмы. Так как Sпол = 1//2 ab то S∆=ab =>V∆= Sh ч.т.д. Билет №5 Перпендикуляр к наклонной плоскости(формулировки, примеры) Объем цилиндра. 1.Рассмотрим пл α и т А, не лежащую в этой плоскости. Проведем через т А прямую, к пл α, и обозначим букв H т пересечения этой прямой с пл α .Отрезок АН называется,  проведенным из т А к пл α, a т Н — основанием . Отметим в пл α какую-нибудь т М,отличную от Н, и проведем отр AM.Он называется наклонной, про-вед

из т А к пл α , а т М — основанием наклонной. Отрезок НМ наз-ывается проекцией наклонной на пл α. Сравним  АН и наклон-ную AM: в прямоугольном ∆АМН сторона АН — катет, а сторона AM - гипотенуза, поэтому АН<АМ. Итак, , проведенный аз данной т к пл, меньше любой наклонной, проведенной из той же т к этой пл. => из всех расстояний от т А до различных т пл α наименьшим является расстояние до т H. Это расстояние, т. е: длина , проведенного из т