Environmental impacts of renewable energy technologies — страница 5

  • Просмотров 5867
  • Скачиваний 102
  • Размер файла 28

surprising side effect of growing trees and other plants for energy is that it could benefit soil quality and farm economies. Energy crops could provide a steady supplemental income for farmers in off-seasons or allow them to work unused land without requiring much additional equipment. Moreover, energy crops could be used to stabilize cropland or rangeland prone to erosion and flooding. Trees would be grown for several years before being harvested, and their roots and leaf litter could help stabilize the soil. The planting of coppicing, or self-regenerating, varieties would minimize the need for disruptive tilling and planting. Perennial grasses harvested like hay could play a similar role; soil losses with a crop such as switchgrass, for example, would be negligible compared to

annual crops such as corn. If improperly managed, however, energy farming could have harmful environmental impacts. Although energy crops could be grown with less pesticide and fertilizer than conventional food crops, large-scale energy farming could nevertheless lead to increases in chemical use simply because more land would be under cultivation. It could also affect biodiversity through the destruction of species habitats, especially if forests are more intensively managed. If agricultural or forestry wastes and residues were used for fuel, then soils could be depleted of organic content and nutrients unless care was taken to leave enough wastes behind. These concerns point up the need for regulation and monitoring of energy crop development and waste use. Energy farms may

present a perfect opportunity to promote low-impact sustainable agriculture, or, as it is sometimes called, organic farming. A relatively new federal effort for food crops emphasizes crop rotation, integrated pest management, and sound soil husbandry to increase profits and improve long-term productivity. These methods could be adapted to energy farming. Nitrogen-fixing crops could be used to provide natural fertilizer, while crop diversity and use of pest parasites and predators could reduce pesticide use. Though such practices may not produce as high a yield as more intensive methods, this penalty could be offset by reduced energy and chemical costs. Increasing the amount of forest wood harvested for energy could have both positive and negative effects. On one hand, it could

provide an incentive for the forest-products industry to manage its resources more efficiently, and thus improve forest health. But it could also provide an excuse, under the "green" mantle, to exploit forests in an unsustainable fashion. Unfortunately, commercial forests have not always been soundly managed, and many people view with alarm the prospect of increased wood cutting. Their concerns can be met by tighter government controls on forestry practices and by following the principles of "excellent" forestry. If such principles are applied, it should be possible to extract energy from forests indefinitely. Hydropower The development of hydropower has become increasingly problematic in the United States. The construction of large dams has virtually ceased

because most suitable undeveloped sites are under federal environmental protection. To some extent, the slack has been taken up by a revival of small-scale development. But small-scale hydro development has not met early expectations. As of 1988, small hydropower plants made up only one-tenth of total hydropower capacity. Declining fossil-fuel prices and reductions in renewable energy tax credits are only partly responsible for the slowdown in hydropower development. Just as significant have been public opposition to new development and environmental regulations. Environmental regulations affect existing projects as well as new ones. For example, a series of large facilities on the Columbia River in Washington will probably be forced to reduce their peak output by 1,000 MW to

save an endangered species of salmon. Salmon numbers have declined rapidly because the young are forced to make a long and arduous trip downstream through several power plants, risking death from turbine blades at each stage. To ease this trip, hydropower plants may be required to divert water around their turbines at those times of the year when the fish attempt the trip. And in New England and the Northwest, there is a growing popular movement to dismantle small hydropower plants in an attempt to restore native trout and salmon populations. That environmental concerns would constrain hydropower development in the United States is perhaps ironic, since these plants produce no air pollution or greenhouse gases. Yet, as the salmon example makes clear, they affect the environment.