Генераторы псевдослучайных чисел и методы их тестирования — страница 3

  • Просмотров 12358
  • Скачиваний 3733
  • Размер файла 2152
    Кб

последовательность чисел, элементы которой почти независимы друг от друга и подчиняются заданному распределению (обычно равномерному). Можно сформировать три основных требования, которым должны удовлетворять криптографическистойкие генераторы псевдослучайных последовательностей или гаммы. 1. Период гаммы должен быть достаточно большим для шифрования сообщений различной длины. 2. Гамма должна быть трудно предсказуемой.

Это значит, что если известны тип генератора и кусок гаммы, то невозможно предсказать следующий за этим куском бит гаммы или предшествующий этому куску бит гаммы. 3. Генерирование гаммы не должно быть связано с большими техническими и организационными трудностями. Самая важная характеристика генератора псевдослучайных чисел - это информационная длина его периода, после которого числа будут либо просто повторяться, либо их

можно будет предсказать. Эта длина практически определяет возможное число ключей криптосистемы. Чем эта длина больше, тем сложнее подобрать ключ. Второе из указанных выше требований связано со следующей проблемой: на основании чего можно сделать заключение, что гамма конкретного генератора действительно является непредсказуемой? Пока в мире нет универсальных и практически проверяемых критериев для проверки этого свойства.

Интуитивно случайность воспринимается как непредсказуемость. Чтобы гамма считалась случайной и непредсказуемой как минимум необходимо, чтобы ее период был очень большим, а различные комбинации бит определенной длины равномерно распределялись по всей ее длине. Это требование статистически можно толковать и как сложность закона генерации псевдослучайной последовательности чисел. Если по достаточно длинному отрезку этой

последовательности нельзя ни статистически, ни аналитически определить этот закон генерации, то в принципе этим можно удовлетвориться. И, наконец, третье требование должно гарантировать возможность практической реализации генераторов псевдослучайных последовательностей с учетом требуемого быстродействия и удобства практичного использования. Рассмотрим теперь некоторые практические методы получения псевдослучайных

чисел. 3 Методы получение псевдослучайных чисел Одним из первых таких методов был метод, предложенный в 1946 году Д. фон Нейманом. Этот метод базировался на том, что каждое последующее число в псевдослучайной последовательности формировалось возведением предыдущего числа в квадрат и отбрасыванием цифр с обоих концов. Однако этот метод оказался ненадежным, и от него быстро отказались. Другим методом является так называемый