Идеальный газ

  • Просмотров 734
  • Скачиваний 19
  • Размер файла 112
    Кб

Идеальный газ Распределение Больцмана. Под идеальным газом будем понимать газ, между частицами которого взаимодействие настолько мало, что им можно пренебречь. Это предположение может быть обеспечено малостью взаимодействия частиц при любых расстояниях между ними, либо при достаточной разрежённости газа. Отсутствие взаимодействия между молекулами позволяет свести задачу об определении уровней энергии En всего газа в

целом к определению уровней энергии отдельной молекулы (будем их обозначать k, где индекс k представляет собой совокупность квантовых чисел, определяющих состояние молекулы, энергии En выразятся, как суммы энергий по молекулам). Обозначим через nk число частиц, находящихся в k-том квантовом состоянии (это так называемые числа заполнения различных квантовых состояний) и поставим задачу вычислить средние значения nk этих чисел,

причём будем рассматривать случай, когда nk  1. То есть мы рассматриваем достаточно разрежённый газ. (фактически это выполняется для всех обычных молекулярных или атомных газов). Условие nk  1 означает, что в каждый момент времени в каждом квантовом состоянии реально находится не более одной частицы, в связи с этим можно пренебрегать не только непосредственным силовым взаимодействием частиц, но и их косвенным

квантомеханическим взаимным влиянием. А это обстоятельство, в свою очередь, позволяет нам применить к отдельным молекулам формулу распределения Гиббса. Итак, применив к молекулам формулу Гиббса, мы утверждаем, что: , где a – константа, определяемая из условия нормировки: (N – полное число частиц в газе). Это и есть распределение Больцмана (L.Boltzmann, 1877). Константа a может также быть выражена через термодинамические величины газа.

Применим распределение Гиббса к совокупности всех частиц, находящихся в данном квантовом состоянии. Мы можем это сделать (даже если nk не малы), поскольку непосредственного силового взаимодействия между этими и остальными частицами нет, а квантомеханические эффекты имеют место лишь для частиц, находящихся в одном и том же состоянии. Положим в общей форме распределения Гиббса с переменным числом частиц E = nkk, N = nk и, приписывая