Использование мультимедийных средств при изучении основных свойств движений в курсе планиметрии основной школы — страница 18

  • Просмотров 2416
  • Скачиваний 15
  • Размер файла 1159
    Кб

е. оно может быть доказано. Доказательство не приводится, а смысл этого предложения раскрывается учащимся с помощью рисунка 127 в учебном пособии. Далее вводится определение равенства фигур через понятие движение: две фигуры называются равными, если существует движение, отображающее одну из них на другую (рис. 126). Затем формулируется утверждение: так как при движении длины сохраняются, то равные отрезки имеют равную длину.

Справедливо и обратное утверждение: если два отрезка имеют равную длину, то они равны, т. е. существует движение, отображающее один из них на другой. В параграфе 11 («Поворот и центральная симметрия») вводится один из видов движений – поворот c примерами рисунков для наглядного представления данного вида движения. Далее рассматриваются задачи с решениями. После решения задачи 1 упоминаются «характерные точки» фигуры. В случае

отрезка такими характерными точками являются его концы. Для ломанной (или многоугольника) - вершины. Далее рассматривается способ нахождения образа окружности. Глава 5. Осевая симметрия В параграфе 16 («Построение симметричных фигур») при изложении материала о движениях нарушено логическое изложение материала: определение движения даётся лишь описательное, и доказательство того, что рассматриваемое преобразование является

движением (т. е. сохраняет расстояния), не приводится. Несколько лучше описывается параллельный перенос. Поворот и осевая симметрия вводятся лишь описательно. В частности, поворот определяется как движение плоскости, при котором только одна точка остаётся неподвижной, т. е. переходит в себя. Однако не доказывается почему такое движение существует, а только приводится наглядный рисунок. Рассмотрение данного рисунка заменяет для

учащихся доказательство существования. По аналогии рассматривается и осевая симметрия, которая определена как такое движение плоскости, при котором все точки некоторой прямой остаются неподвижными, а любая точка не принадлежащая данной прямой переходит в другую точку, лежащую по другую сторону этой прямой на равном расстоянии. Как и в предыдущих параграфах, говорится о том, что для построения образа фигуры надо выделить в

ней характерные точки и построить их образы. В параграфе 17 («Ось симметрии двух точек») материал дается традиционный. Материал о четырёхугольниках специального вида (прямоугольник, ромб, квадрат) рассредоточен по разным параграфам учебного пособия. В данном параграфе рассматривается ромб. В 18 параграфе («Свойства равнобедренного треугольника») упор сделан на симметричность равнобедренного треугольника; это систематизирует