Конспект лекций по курсу ЭММ (Экономико-математические методы и модели)

  • Просмотров 3594
  • Скачиваний 430
  • Размер файла 234
    Кб

1.Основные эконометрические понятия и термины, используемые модели. Слово “эконометрика” – соединение 2-х слов – экономика (наука об экон. сис-ах), метрика (наука об измерениях). Со временем, требовалось оценить точно возникающие связи между экономическими объектами (труд. ресурсами, ср. возраст рабочего, уровень безработицы, з/пл и т.д.) т.к. эти понятия носят как правило случайный характер, то без таких понятий как регрессия,

корреляция, эконометрическая модель, временной ряд не обойтись. Обычно, те объекты, которые носят независимый характер, в экономике называют фактор признаками. Например: х1 – время процесса, х2 – раб. период, х3 – выделяемые средства (V ср-в) – это все независимые переменные – экзогенные переменные (фактор признаки). Аналогично, у1 – V выпуска продукции, у2 – себестоимость, у3 - рентабельность, у4 – инвестиции в про-во – зависимые

переменные – эндогенные переменные (результативные признаки). Не всегда затраты ведут к максимизации прибыли. Чтобы написать ту или иную зависимость прим. ур-ие регрессии. Уравнение регрессии – ур-ие, связывающее между собой фактор признаки и результативные признаки. Ур-ие регрессии бывают линейные и нелинейные. Сама регрессия бывает парная (зависимость между 1-им фактор признаком и результатом) и множественная. y = y(x) (1) (з.

между 1-им ф. признаком и рез-ом) y = a + bx (2)(парная линейная регрессия, т.к. х и у участвуют в 1-ой степени, а и b – параметры регрессии имеющие экономический смысл). Чтобы учесть возникающие помехи (погрешности в уравнении (2)) обычно пишут: у = a + bx + e, где e – искажение модели, учитывающее ряд других фактор признаков не явно участвующих в процессе. Существуют и другого вида регрессии: 1)  Линейные – по фактор признаку. 2)  Нелинейные –

по параметрам. Например: (регрессия линейная, а и b под зн. log) Однако, часть нелинейных регрессий легко сводится к лин. регрессиям: Например: y = Ax + B, где Однако, сущ. ур-ия регрессии не сводящиеся никаким способом к линейным. Например: (здесь регрессия нелинейная по фактор признаку х и по параметрам а и b) Теория корреляции учитывает тесноту связи между признаками х и у. Основными характеристиками служат: 1)  линейный коэффициент