Методика изучения элементов математического моделирования в курсе математики 5-6 классов — страница 11
математические модели используются для решения (или хотя бы облегчения решения) сюжетных задач. Кроме того, при построении модели используется такие операции мышления, как анализ через синтез, сравнение, классификация, обобщение, которые являются операциями мышления, и способствует его развитию. Составление математической модели задачи, перевод задачи на язык математики исподволь готовит учащихся к моделированию реальных процессов и явлений в их будущей деятельности. При решении сюжетных задач особенно часто используются их алгебраические и аналитические модели. Такой моделью может быть функция, описывающая явление или процесс, уравнение, система уравнений, неравенство, система неравенств, система уравнений и неравенств и др. При составлении модели задача, таким образом, переводится на язык алгебры или математического анализа. Рассмотрим несколько примеров математических моделей. Задача 1. Турист проехал 2200 км, причем на теплоходе проехал вдвое больше, чем на автомобиле, а на поезде в 4 раза больше, чем на теплоходе. Сколько километров проехал турист отдельно на каждом виде транспорта? Решение. Примем расстояние, которое проехал турист на автомобиле за x км. Известно, что на теплоходе проехал вдвое больше, чем на автомобиле, то есть 2x км. На поезде проехал в 4 раза больше, чем на теплоходе, то есть . Весь путь – это сумма расстояний, которые проехал турист на каждом из видов транспорта и он равен 2200 км. Получим следующее уравнение: - это и есть математическая модель данной задачи. Задача 2. На школьной математической олимпиаде было предложено решить 6 задач. За каждую решенную задачу засчитывалось 10 очков, а за нерешенную снималось 3 очка. В следующий тур выходили ученики, набравшие не менее 30 очков. Сколько задач нужно было решить, чтобы попасть в следующий тур олимпиады? (См. № 151, [18]). Решение. Пусть ученик должен решить х задач. Тогда за решенные задачи он получит 10х очков, а за 6-х нерешенных задач у него снимут 3(6-х) очков. Ученик может получить 10х-3(6-х) очков (все переменные выражены через выбранное х и значения других величин, заданных в задаче). По условию задачи и . Моделью задачи служит система неравенств . Далее в качестве примера рассмотрим задачу математического анализа на нахождение экстремума. Надо заметить, что аналитической моделью задачи на наибольшее (наименьшее) значение является функция одного переменного с областью ее задания. Обычно областью задания является замкнутый промежуток. Задача 3. Кусок проволоки длиной 48 м сгибают так, чтобы образовался прямоугольник. Какую длину должны иметь стороны
Похожие работы
- Рефераты
- Рефераты