Методика изучения объемов многогранников в курсе стереометрии — страница 10
всех учебниках объем вводится аналогично площади, с той лишь разницей, что в учебнике [7] определения нет, а в учебниках [8] и [6] они имеются: в учебнике [8] – это положительная величина, а в учебнике [6] – неотрицательная. Существуют два подхода к определению объема: 1 подход. Понятие объема вводится аксиоматически. Объем – это положительная величина, численное значение которой обладает следующими свойствами: - равные тела имеют равные объемы; - если тело разбито на части, являющиеся простыми телами, то объем этого тела равен сумме объемов его частей; - объем куба, ребро которого равно единице длины, равен единице. Такой подход реализован в учебниках [8] и [6]. Причем, как говорилось выше, перед понятием объема проговаривается аналогия с понятием площади. 2 подход. Понятие вводится конструктивно. Будем считать, что каждое из рассматриваемых нами тел имеет объем, который можно измерить с помощью выбранной единицы измерения объемов. За единицу измерения объемов примем куб, ребро которого равно единице измерения отрезков. Куб с ребром 1 см. называют кубическим сантиметром и обозначают см3. Такой подход реализован в учебнике [7]. Отличие также состоит в том, что аксиомы, сформулированные в учебнике [8] в определении, в учебнике [7] прописаны отдельной чертой как свойства. Дальнейшее изучение происходит по-разному. Во всех учебниках первой формулой вводится объем прямоугольного параллелепипеда, как произведения трех его измерений. Что касается учебного пособия [6], то в нем изложение материала отличается от других учебников. Это связано с тем, что предназначен он для классов с углубленным изучением математики. Материал построен таким образом, что сначала сформированные наглядные представления расширяются, причем отталкиваясь от реальности. Затем, переходя от наглядности, осуществляется точная словесная формулировка. Так, например, доказывается теорема об объеме прямого цилиндра. Призма рассматривается как частный случай - это цилиндр, но с другим основанием. Аналогичным образом вводится объем конуса, а отсюда получаем как следствие объем пирамиды. Представление объема интегралом доказывается в виде теоремы, но не в полном объеме, так как оно сложно и требует расширения понятия интеграла. Применение этот материал нашел при доказательстве формул объемов цилиндра, конуса (пирамиды) и шара. Для некоторых тел вращения дается общая формула объема через интеграл. В виде задач сформулированы метод Кавальери и формула Симпсона, причем предлагается найти им аналоги в планиметрии. Аналогично предлагается вывести самостоятельно формулы для