Методика изучения объемов многогранников в курсе стереометрии — страница 4

  • Просмотров 2981
  • Скачиваний 10
  • Размер файла 176
    Кб

имеют большую практическую значимость. Другой подход к структурированию курса математики старших классов связан с реализацией профильной дифференциации обучения. Вводятся два курса – курс А и курс В разного объема и уровня. Курс А ориентирован на тех учащихся, которые рассматривают математику как элемент общего образования и не предполагают использовать ее непосредственно в своей будущей профессии. Этот курс представлен

одним предметом математикой, в котором в разумной последовательности чередуются сведения алгебры и начал анализа с геометрическим материалом. Цель изучения курса А в 10-11 классах – дать учащимся представление о роли математики в современном мире, о способах применения математики как в технических, так и в гуманитарных сферах. При изучении в этом курсе элементов анализа опора делается на наглядно-интуитивное представление

учащихся, роль формальных рассуждений и доказательств невелика. Изучение геометрического материала также широко опирается на наглядность. Существенно снижается внимание к идее аксиоматического построения курса стереометрии. Основной акцент делается на формирование умений применить изученные факты в простейших случаях. Курс В предназначен для учащихся, выбравших для себя те области деятельности, в которых математика

играет роль аппарата, специфического средства для изучения закономерностей окружающего мира. В рамках этого курса сохраняются традиции деления на два предмета – алгебра и начала анализа и геометрия. Изучение алгебры и начал анализа и геометрии как составляющих курса В предполагает реализацию тех же целей, которые ставятся перед этими математическими дисциплинами в общеобразовательном курсе, но на более высоком и

усложненном уровне [36]. Изучение программного материала по теме «Объемы многогранников» дает возможность учащимся: получить представление о широте применения геометрии в различных областях человеческой деятельности; познакомиться с некоторыми фактами истории геометрии; усвоить систематизированные сведения о пространственных формах; научиться проводить аналогию плоскими и пространственными конфигурациями, видеть

общность и различие свойств аналогичных структур на плоскости и в пространстве, использовать планиметрические сведения для описания и исследования пространственных фигур; научиться иллюстрировать и моделировать проекционным чертежом пространственные формы, решать позиционные задачи (в частности, задачи на сечения) на проекционном чертеже; решать задачи на нахождение площадей поверхностей и объемов тел, на вычисление