Методика обучения решению текстовых задач алгебраическим способом — страница 8

  • Просмотров 4729
  • Скачиваний 13
  • Размер файла 330
    Кб

ее условия, мы все время должны соотносить этот анализ с требованием задачи, как бы постоянно оглядываться на требование. Иными словами, анализ задачи всегда направлен на требования задачи. Анализируя условия задач, можно заметить, что каждое из них состоит из одного или нескольких объектов и некоторой их характеристики. Если в условии один объект, то указывается его характеристика в виде некоторого свойства этого объекта;

если же объектов два, то характеристикой служит некоторое отношение этих объектов. После того, как задача проанализирована, ее условие надо как-то записать. Но записывать ее словесно, описательно малоудобно, так как это займет много места и времени. Поэтому надо найти более удобную, более компактную и в то же время достаточно наглядную форму записи результатов анализа задач. Такой формой является схематическая запись задачи.

Заметим, что не для всякой задачи надо делать схематическую запись. Так, например, для задач по решению уравнений, неравенств, преобразований выражений анализ проводится обычно устно и никак не оформляется. Вообще для задач, которые записаны на символическом языке, схематическая запись не нужна. Первой отличительной особенностью схематической записи задач является широкое использование в ней разного рода обозначений,

символов, букв, рисунков, чертежей и т.д. Второй особенностью является то, что в ней четко выделены все условия и требования задачи, а в записи каждого условия указаны объекты и их характеристики, наконец, в схематической записи фиксируется лишь только то, что необходимо для решения задачи; Все другие подробности, имеющиеся в задаче, при схематической записи отбрасываются. Для схематической записи геометрической и некоторых

других задач полезно использовать чертеж той фигуры, которая рассматривается в задаче. Задачи, которые решаются в школе, различаются в первую очередь характером своих объектов. В одних задачах объектами являются реальные предметы, в других – все объекты математические (числа, геометрические фигуры, функции и т.д.). Первые задачи, в которых хотя бы один объект есть реальный предмет, называются текстовыми (практическими,

житейскими, сюжетными), вторые, все объекты которых математические, называются математическими задачами. В связи с тем, что нашей темой является рассмотрение текстовых задач, мы будем рассматривать именно их. В следующем примере мы произведем анализ задачи, вычленяя из формулировки задачи ее условия, и соотнесем этот анализ с требованиями задачи. Задача. Катер прошел 20 км по течению реки и 20 км против течения реки. Затратит ли он