Методика решения задач повышенной трудности в старших классах средней школы — страница 14
руб. > 600 руб. Обнаруживаем, что расчет продавца ошибочен, т.к. при сложении всех тюльпанов и продажи их по 5 шт. в букетах она теряет 50 руб. Процесс решения этой нестандартной задачи состоит в следующем: данную задачу мы разбили на такие подзадачи: 1) нахождение реальной стоимости; 2) нахождение предполагаемой стоимости; 3) сравнение полученных стоимостей и вывод о расчете продавца. Решив эти стандартные подзадачи, мы в конечном итоге решаем и исходную нестандартную задачу. По мнению Л.М. Фридмана [19,20], процесс решения любой нестандартной задачи состоит в последовательном применении двух основных операций: • сведение (путем преобразования или переформулирования) нестандартной задачи к другой, ей эквивалентной, но уже стандартной (способ моделирования); • разбиение нестандартной задачи на несколько стандартных вспомогательных подзадач (способ разбиения). Для того чтобы легче было осуществлять способы разбиения и моделирования, мы считаем полезным построение вспомогательной модели задачи ‑ схемы, чертежа, рисунка, графа, графика, таблицы. 3. Сколько всего различных незамкнутых ломаных можно построить с вершинами в точках A, B, C, D на рисунке? Задача 3 – это фактически задача на перебор вариантов. Ее цель состоит в том, чтобы дать учащимся возможность накопить некоторый опыт по подсчету числа вариантов и по построению дерева вариантов. После обсуждения ответов и решений учащихся учитель может сказать примерно следующее:«Вы получили разные ответы, но никто не смог доказать, что он перебрал все возможные случаи. Давайте попробуем разработать такой способ подсчета, при котором можно быть уверенным в том, что мы перебрали все возможные варианты.» Тогда словосочетание «перебор … вариантов» появляется в таком контексте, что смысл его объяснять не надо, тем более, что используемые слова учащимся к этому моменту уже знакомы из других жизненных ситуаций. Далее учащимся предлагается сначала посчитать, сколько можно построить ломаных с началом в точке А. Рассуждаем так: из точки А можно пойти в точку B или в точку C или в точку D. Чтобы ничего не пропустить, сделаем рисунок: Теперь подумаем, куда мы можем пойти из точки B, из точки C, из точки D, и т.д. В результате рассуждений получаем такой рисунок. C D B D C B А C D D B D B C C B «Итак, мы видим, что можно построить 6 ломаных с началом в точке A. Как вы думаете, сколько всего ломаных мы получим, если проделаем такую же работу с остальными точками? Проверьте свое предположение дома» [9]. Здесь работа над задачей в классе заканчивается и учащимся предлагается закончить ее дома: изобразить все ломаные с началом в точке A
Похожие работы
- Курсовые
- Рефераты
- Курсовые
- Рефераты