Методика решения задач повышенной трудности в старших классах средней школы — страница 2

  • Просмотров 2315
  • Скачиваний 18
  • Размер файла 774
    Кб

новому определению, знания представляются не как обладание какой-либо информацией, а как умение и способность найти нужную информацию и правильно применять ее на практике. Поэтому важнейшей задачей школы является не формирование носителя определенной суммы знаний, а содействие становлению личности, ориентирующейся в потоке новой информации и умеющей ее творчески переработать, а это значит, что современной системе школьного

образования соответствует лишь такая теория, которая учитывает развивающую роль обучения и воспитания в становлении личности ребенка. Школа должна готовить не только знающего, но и умеющего ученика. При решении так называемых «развивающих задач» прививаются “привычки ума”, учителя учат тому, как думать, а не тому, что думать. Дети сами могут постигать смысл узнаваемого с помощью умения размышлять, задавать вопросы по

существу, улавливать взаимосвязи, выявлять модели, решать проблемы, принимать правильные решения, понимать и ценить разнообразие, работать совместно с другими людьми, рисковать и управлять ситуацией. Акцент делается не на запоминание фактов, а на умение критически и творчески думать. Основополагающими работами по теории развивающего обучения являются труды Л.С. Выготского, П.Я. Гальперина, В.В. Давыдова, Л.В. Занкова, Е.И.

Кабановой-Меллер, А.Н. Леонтьева, Н.А. Менчинской, С.Л. Рубинштейна, Н.Ф. Талызиной, Д.Б. Эльконина, И.С. Якиманской и др. В области педагогики в теории развивающего обучения существенный вклад внесли Ю.К. Бабанский, Л.я. Зорина, И.Я. Лернер, М.И. Махмутов и др. Разработке теоретических основ развивающего обучения математике посвящены специальные исследования Х.Ж. Ганеева, Н.Б. Истоминой, Л.Г. Петерсон, З.И. Слепкань и др. Большое внимание в

работах по развивающему обучению уделяется математическому мышлению. Формирование математического стиля мышления является важным для жизни в современном обществе. Объекты математических умозаключений и правила их конструирования должны вырабатывать умения формулировать, обосновывать и доказывать суждения, то есть развивать логическое мышление. Известный математик – педагог Д. Пойа в книге «Как решать задачу?» писал:

«Что значит владение математикой? Это есть умение решать задачи, причем не только стандартные, но и требующие известной независимости мышления, здравого смысла, оригинальности, изобретательности». Поэтому важнейшей задачей школы является не формирование носителя определенной суммы знаний, а содействие становлению личности, ориентирующейся в потоке новой информации и умеющей ее творчески переработать. Основы такого умения