Методика решения задач повышенной трудности в старших классах средней школы — страница 8
и всесторонний анализ задачи. Решить математическую задачу ‑ это значит найти такую последовательность общих положений математики (определений, аксиом, теорем, правил, законов, формул), применяя которые к условиям задачи или к их следствиям (промежуточным результатам решения) получаем то, что требуется в задаче, ‑ ее ответ. Основными методами поиска решения задач являются анализ и синтез. Благодаря анализу осуществляется целенаправленная актуализация знаний (знания актуализируются не механически, наугад, «вслепую», а в связи с потребностью в них). В ходе анализа естественно определяются момент использования знаний (не тогда, когда вспоминаешь, а тогда, когда нужно), выбор знаний (берутся лишь те знания, в которых возникла потребность при анализе), форма использования знаний (не так, как в учебнике, а в том виде, в каком это удобнее для решения задачи) и характер использования знаний (все сразу или поочередно). Ранее были рассмотрены анализ Паппа и анализ Евклида. Они применимы и при поиске решений задач. Каждый из этих анализов имеет свою область применения. Например, при поиске решений текстовых задач с помощью уравнений более удобным является анализ Евклида: искомая величина обозначается через х и на основе текста задачи выводятся следствия до тех пор, пока не будет получено уравнение, связывающее искомую величину х с данными величинами. Поиск решения текстовых задач (решаемых арифметическими средствами) удобнее вести с помощью анализа Паппа. Поиск решения таких задач начинают с вопроса задачи и определяют, какие величины надо знать, чтобы ответить на этот вопрос. Далее выясняют, являются ли эти величины известными. Если некоторые из них не даны в условии задачи, то ставится вопрос, как можно найти такие величины, что необходимо знать для этого. Подобные вопросы повторяют до тех пор, пока не обнаружится, что нахождение «промежуточных» неизвестных величин сводится к вычислениям с данными величинами. Таким образом, при решении задач можно выделить следующие общие приемы мыслительной деятельности: первый прием - прием развертывания термина, он состоит в выведении всевозможных следствий из условия задачи или в выяснении всевозможных свойств объектов, о которых говорится в задаче. Второй прием - анализ через синтез - «челнок» состоит в чередовании восходящего анализа и синтетических рассуждений. Эти два приема подводят к формированию плана решения задачи. Третий прием - прием построения дедуктивных умозаключений. Именно эти приемы должны быть отработаны с учащимися. В заключение отметим, что большинство приемов поиска решения
Похожие работы
- Рефераты