Синтез голографического изображения с помощью компьютера — страница 6

  • Просмотров 3266
  • Скачиваний 206
  • Размер файла 28
    Кб

возможностями ЭВМ. Кроме того, есть разумный предел плотности дискретизации, определяемый разрешающей способностью оптических элементов и фотоматериалов, участвующих в голографическом процессе. Этот предел для функций с ограниченным спектром определяется известной специалистам теоремой Котельникова, из которой следует, что если функция имеет спектр, ограниченный частотой f0, то она может быть представлена с большой

точностью в точках xm, отстоящих одна от другой на расстоянии . Теорема Котельникова легко распространяется на двумерные функции. В этом случае отсчеты берут в узлах прямоугольной сетки с размерами ячеек   . Итак, переходя к цифровому моделированию голографического процесса, заменим части плоскостей П и Г, ограниченные прямоугольными апертурами, сетками. В узлах этих сеток зададим отсчеты поля. Эти сетки в плоскости

предметов обозначим s П, а в плоскости голограммы - s Г . Для удобства последующих преобразований расположение сеток в плоскостях П и Г выберем таким, как показано на рис. 1. Правомерность такого выбора будет видна из дальнейшего. Чтобы параметры сеток отвечали теореме Котельникова, необходимо выполнение следующих соотношений:   PRIVATE  Рис.1 Расположение сеток.  (1)   При этом суммарное число узлов сетки s П равно MN. Перейдем в

плоскости П к новым координатам. Приняв размеры сетки Х=У=1, получаем: . (2) Следовательно, координаты узлов сетки s П выразятся так: (3) Число узлов сетки s Г выбирают так, чтобы было обеспечено взаимно однозначное соответствие между изображениями, заданными на s П и его дискретным преобразованием Фурье, заданным на s Г. Это число узлов также оказывается равным MN. Последнее определено тем, что в системе, состоящей из MN точек, полной

является система тригонометрических функций с частотами (4) Соотношения между размерами сеток s П и s Г получим из (1) с учетом того, что  и  (5) Выбор сеток в плоскостях П и Г означает, что все непрерывные функции в этих плоскостях могут быть представлены своими дискретными значениями в узлах сетки. Эти значения теперь являются функциями номеров узлов, т.е. m и n в плоскости П, p и q в плоскости Г. Для отличия от непрерывных величин

аргументы дискретных величин будем обозначать индексами, например Еmn, вместо Е(хm,уn), Аpq вместо А(р,q). Установим соответствие между основными физическими величинами, рассмотренными ранее, и их цифровыми моделями. Поле в плоскости П представим так: (6) дискретное преобразование Фурье от hmn определит соотношение: (7) Примем c учетом (6) (8) Цифровая модель голограммы Фурье будет иметь вид (9) где (10) Величину  можно интерпретировать как