Векторная алгебра 3

  • Просмотров 615
  • Скачиваний 24
  • Размер файла 15
    Кб

ВЕКТОРНАЯ АЛГЕБРА ВЕКТОРНАЯ АЛГЕБРА - раздел векторного исчисления в котором изучаются простейшие операции над (свободными) векторами. К числу операций относятся линейные операции над векторами: операция сложения векторов и умножения вектора на число. Суммой a+b векторов a и b называют вектор , проведенный из начала a к концу b , если конец a и начало b совмещены. Операция сложения векторов обладает свойствами: a+b=b+a

(коммутативность) (а+b)*с=а*(b+с) (ассоциативность) a + 0=a (наличие нулевого элемента ) a+(-a)=0 (наличие противоположного элемента), где 0 - нулевой вектор, - a есть вектор, противоположный вектору а . Разностью a-b векторов a и b называют вектор x такой, что x+b=a. Произведением l x вектора а на число l в случае l № 0 , а № О называют вектор, модуль которого равен | l ||a| и который направлен в ту же сторону, что и вектор a , если l >0, и в противоположную, если l

<0 . Если l =0 или (и) a =0, то l a=0 . Операция умножения вектора на число обладает свойствами: l *(a+b)= l *a+ l *b (дистрибутивность относительно сложения векторов) ( l +u)*a= l *a+u*a (дистрибутивность относительно сложения чисел) l *(u*a)=( l *u)*a (ассоциативность) 1*a=a (умножение на единицу) Множество всех векторов пространства с введенными в нем операциями сложения и умножения на число образует векторное пространство (линейное пространство). В Векторной

алгебре важное значение имеет понятие линейной зависимости векторов. Векторы а, b, … , с называются линейно зависимыми векторами, если существуют числа a , b ,…, g из которых хотя бы одно отлично от нуля, такие, что справедливо равенство: a a+ b b+… g c=0. (1) Для линейной зависимости двух векторов необходима и достаточна их коллинеарность, для линейной зависимости трех векторов необходима и достаточна их компланарность. Если один из

векторов а, b, ...,c нулевой, то они линейно зависимы. Векторы a,b, ..,с называются линейно независимыми, если из равенства (1) следует, что числа a , b ,…, g равны нулю. На плоскости существует не более двух, а в трехмерном пространстве не более трех линейно независимых векторов. Совокупность трех (двух) линейно независимых векторов e 1 ,e 2 ,e 3 трехмерного пространства (плоскости), взятых в определенном порядке, образует базис. Любой вектор а