Великая теорема Ферма

  • Просмотров 4997
  • Скачиваний 493
  • Размер файла 52
    Кб

ГОРОДСКОЙ КЛАССИЧЕСКИЙ ЛИЦЕЙ РЕФЕРАТ Великая теорема Ферма Подготовил: Петров А. А., 9Б класс (физ-мат) г. Кемерово - 1998 Содержание 1.    Биография Ферма 2.    История Большой теоремы Ферма 3.    Доказательство леммы 1 (Жермен) 4.    Доказательство леммы 2 (вспомогательной) 5.    Доказательство теоремы Ферма для показателя 4 6.    Примечания к доказательствам Биография Ферма Пьер Ферма жил с 1601

по 1665 год. Был он сыном одного из многочисленных торговцев во Франции, получил юридическое образование и работал сначала адвокатом, а впоследствии стал даже советником парламента. Служебные его обязанности, далёкие по содержанию от математических наук, оставляли ему достаточно досуга, который Ферма и посвящал занятиям математическими исследованиями. Благодаря своим природным способностям и настойчивости, необходимой при

работе над вопросами математики, Ферма добился крупных результатов в самых различных её областях. Но не только математикой был он силён: в области физики, например, им сформулирован основной принцип геометрической оптики, известный под названием «Принципа Ферма». Ферма своими работами способствовал развитию новых отраслей в математике: математического анализа, аналитической геометрии (одновременно с Декартом), теории

вероятностей. Главным вкладом Ферма в алгебру явилась развитая им теория соединений или, как её ещё называют, комбинаторика. Отдельные задачи теории соединений были решены уже в древности греками и индийцами, но научная постановка этих вопросов возникла лишь в XVII веке в работах Ферма и его современника, знаменитого французского философа, математика и физика Блеза Паскаля. Исходя из основ комбинаторики, эти два учёных и

положили начало новой математической науке, называемой теорией вероятностей, получившей в XVIII веке значительную теоретическую базу, при этом она стала получать всё большее распространение и использоваться в различных областях науки и практической деятельности. Прежде всего, она была применима к вопросам страхования, а в дальнейшем область её применения всё расширялась и расширялась. Много внимания Ферма также уделял и