Великая теорема Ферма — страница 4

  • Просмотров 5041
  • Скачиваний 493
  • Размер файла 52
    Кб

(2d – 1)2 = 4k2 – 4k + 1 + 4d2 – 4d + 1 = 4(k2 + d2 – k – d) + 2, чего быть не может, т. к. x2 + y2 = z2. Кроме того (±x; ±y; ±z) также является решением уравнения, т. к. x2 = (-x)2; y2 = (-y)2; z2 = (-z)2. Из этих замечаний непосредственно следует, что нам достаточно найти лишь состоящие из положительных чисел примитивные решения (x; y; z) уравнения (1), т. е. исключим все следующие решения: (±x; ±y; ±z), кроме (x; y; z), (y, x, z), для которых x = 2a. Лемма 2: «Любое состоящее из положительных чисел

примитивное решение (x, y, z) уравнения (1), для которого x = 2a, выражается формулами: x = 2mn; y = m2 – n2; z = m2 + n2, где n < m, НОД(m; n) = 1, m и n – числа разной чётности». Доказательство: Пусть (x; y; z) – произвольное, состоящее из положительных чисел примитивное решение уравнения (1), где x = 2a. Из уравнения 4a2 + y2 = z2 следует (z – y)(z + y) = 4k2. Чётность чисел z – y и z + y совпадают и произведение их равно 4k2, следовательно, z – y и z + y чётные. Пусть z + y = 2b; z – y = 2c, где b и

c положительны, т. к. y < z, исходя из уравнения (1). Каждый общий делитель l чисел b и c является также общим делителем z = b + c и y = b – c. НОД(y; z) = 1, т. к. (x; y; z) – примитивное решение уравнения (1), следовательно, НОД(b; c) = 1. С другой стороны 4a2 = x2 = z2 – y2 = (z – y)(z + y) = 4bc, т. е. a2 = bc. Следовательно, согласно лемме 1, применённой к случаю, когда n = 2, существуют такие взаимно простые положительные числа разной чётности m и n, что b = m2; c = n2. Тогда a2 = (mn)2, т. е. a =

mn и x = 2a = 2mn; y = b – c = m2 – n2; z = b + c = m2 + n2. Для завершения доказательства остаётся лишь добавить, что n < m, т. к. x, y > 0. Доказательство теоремы Ферма для показателя 4 x4 + y4 = z4 Докажем ещё более общий случай: «Уравнение x4 + y4 = z2 (2) не имеет решений в целых отличных от нуля числах». Доказательство: Предположим, что существует решение уравнения (2) в целых отличных от нуля числах. Ясно, что, не теряя общности, мы можем считать, что оно состоит из

попарно взаимно простых положительных чисел (если (x; y; z) является решением уравнения (2), то, сразу же видно, что (lx; ly; lz) также является его решением). Так как в любом множестве натуральных чисел существует наименьшее из них, то среди всех таких решений найдётся решение (x; y; z) с наименьшим z. Рассмотрим именно это решение: Так же, как и при доказательстве леммы 2 немедленно доказывается, что одно из чисел x и y должно быть чётным.

Предположим, что чётно число x. Это предположение также общности не ограничивает. Так как числа x2, y2 и z положительны и взаимно просты, а число x2 чётно, то, согласно лемме 2, существуют такие взаимно простые числа m и n < m разной чётности, что x2 = 2mn; y2 = m2 – n2; z2 = m2 + n2. Если m = 2k и n = 2f +1, то y = 4(k2 – f2 – f – 1) + 3, что невозможно, ибо, как выше было уже отмечено, любой квадрат должен иметь вид 4k + 1, или 4k. Следовательно, m – нечётно, а n – чётно. Пусть n