Великие задачи древности

  • Просмотров 1423
  • Скачиваний 28
  • Размер файла 145
    Кб

Великие задачи древности. Реферат ученика 10 ф/м б класса Кожевникова Кирилла. Февраль 2002 г. С глубокой древности известны три задачи на построение: об удвоении куба, трисекции угла и квадратуре круга. Они сыграли особую роль в истории математики. В конце концов было доказано, что эти задачи невозможно решить, пользуясь только циркулем и линейкой. Но уже сама постановка задачи — «доказать неразрешимость» — была смелым шагом

вперёд. Вместе с тем предлагалось множество решений при помощи нетрадиционных инструментов. Всё это привело к возникновению и развитию совершенно новых идей в геометрии и алгебре. Немало преуспели в нестандартных и различных приближённых решениях любители математики — среди них три знаменитые задачи древности особенно популярны. Задачи кажутся доступными любому: вводят в заблуждение их простые формулировки. До сих пор

редакции математических журналов время от времени получают письма, авторы которых пытаются опровергнуть давно установленные истины и подробно излагают решение какой-либо из знаменитых задач с помощью циркуля и линейки. КЛАССИЧЕСКИЕ ЗАДАЧИ ДРЕВНОСТИ Древнегреческие математики достигли чрезвычайно большого искусства в геометрических построениях с помощью циркуля и линейки. Однако три задачи не поддавались их усилиям.

Прошли тысячелетия, и только в наше время, наконец, были получены их решения. История нахождения квадратуры круга длилась четыре тысячелетия, а сам термин стал синонимом неразрешимых задач. Как следует из подобия кругов, отношение длины окружности к ее диаметру есть величина постоянная, не зависящая от радиуса круга, она обозначается буквой п. Таким образом, длина окружности круга радиуса r равна 2r2, а так как площадь круга

равна S = 2r2, то задача о квадратуре круга сводится к задаче построения треугольника с основанием 2r2 и высотой r. Для него потом уже без труда может быть построен равновеликий квадрат. Итак, задача сводилась к построению отрезка, длина которого равна длине окружности данного круга. Это было показано еще Архимедом в сочинении «Измерение круга», где он доказывает, что число  меньше чем , но больше чем , т.е. 3,1408 <  < 3,1429. В наши